# STRUCTURAL CALCULATIONS

## 9820 SE 35th Place Remodel

Mercer Island, Washington

PROJECT NO.: 20-129

DATE: November 4, 2020

11/4/2020





1735 WESTLAKE AVENUE NORTH, SUITE 205 SEATTLE, WASHINGTON 98109 P: 206.456.3071 F: 206.456.3076 W: www.fossatti.com





### Roof, Roof: Joist RJ1 1 piece(s) 2 x 8 Hem-Fir No. 2 @ 24" OC

#### Sloped Length: 15' 8 1/16"



ntal. Member Length : 16' 1 1/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed     | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|-------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 444 @ 10' 11 1/2"  | 911 (1.50") | Passed (49%)   |      | 1.0 D + 1.0 S (Alt Spans)   |
| Shear (lbs)           | 405 @ 10' 6 3/8"   | 1251        | Passed (32%)   | 1.15 | 1.0 D + 1.0 S (Alt Spans)   |
| Moment (Ft-Ibs)       | 1068 @ 6' 1 13/16" | 1477        | Passed (72%)   | 1.15 | 1.0 D + 1.0 S (Alt Spans)   |
| Live Load Defl. (in)  | 0.319 @ 6' 1 5/16" | 0.688       | Passed (L/517) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.585 @ 6' 1 3/8"  | 0.917       | Passed (L/282) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Member Pitch : 12/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

|                              | Bearing Length |                     |          | Loads t | o Supports |       |             |
|------------------------------|----------------|---------------------|----------|---------|------------|-------|-------------|
| Supports                     | Total          | Available           | Required | Dead    | Snow       | Total | Accessories |
| 1 - Beveled Plate - SPF      | 5.50"          | 5.50"               | 1.50"    | 262     | 309        | 571   | Blocking    |
| 2 - Hanger on 7 1/4" HF beam | 1.50"          | Hanger <sup>1</sup> | 1.50"    | 207     | 248        | 455   | See note 1  |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 7' o/c            |          |
| Bottom Edge (Lu) | 15' 6" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-                                    | Гіе                                 |                   |               |                |                  |             |
|---------------------------------------------------------------|-------------------------------------|-------------------|---------------|----------------|------------------|-------------|
| Support                                                       | Model                               | Seat Length       | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 2 - Face Mount Hanger                                         | Connector not found                 | N/A               | N/A           | N/A            | N/A              |             |
| <ul> <li>Pofor to manufacturor notos and instructi</li> </ul> | one for proper installation and use | of all connectors |               |                |                  |             |

Refer to manufacturer notes and instructions for proper installation and use of all connectors

|                   |                 |         | Dead   | Snow   |              |
|-------------------|-----------------|---------|--------|--------|--------------|
| Vertical Load     | Location (Side) | Spacing | (0.90) | (1.15) | Comments     |
| 1 - Uniform (PSF) | 0 to 11' 1"     | 24"     | 15.0   | 25.0   | Default Load |

### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Asrade Mengstu
 Fossatti Pawlak Structural Engineers
 (206) 456-3071

 amengstu@fossatti.com
 Image: Comparison of Comparison of



### Roof, Roof Beam RB1 1 piece(s) 4 x 8 Hem-Fir No. 2



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 266 @ 3 1/2"      | 2126 (1.50") | Passed (13%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 202 @ 10 3/4"     | 2918         | Passed (7%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-Ibs)       | 333 @ 2' 9 1/2"   | 3247         | Passed (10%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.006 @ 2' 9 1/2" | 0.167        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.010 @ 2' 9 1/2" | 0.250        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

| Bearing Length |                              |                                                                                                                 | Loads t                                                                                                                   | o Supports                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                        |
|----------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total          | Available                    | Required                                                                                                        | Dead                                                                                                                      | Snow                                                                                                                                                                                                               | Total                                                                                                                                                                                                                                                          | Accessories                                                                                                                                                                                                                            |
| 3.50"          | Hanger <sup>1</sup>          | 1.50"                                                                                                           | 121                                                                                                                       | 174                                                                                                                                                                                                                | 295                                                                                                                                                                                                                                                            | See note 1                                                                                                                                                                                                                             |
| 3.50"          | Hanger <sup>1</sup>          | 1.50"                                                                                                           | 121                                                                                                                       | 174                                                                                                                                                                                                                | 295                                                                                                                                                                                                                                                            | See note 1                                                                                                                                                                                                                             |
|                | B<br>Total<br>3.50"<br>3.50" | Bearing Lengt           Total         Available           3.50"         Hanger1           3.50"         Hanger1 | Bearing Length       Total     Available     Required       3.50"     Hanger1     1.50"       3.50"     Hanger1     1.50" | Bearing Length         Loads t           Total         Available         Required         Dead           3.50"         Hanger1         1.50"         121           3.50"         Hanger1         1.50"         121 | Bearing Length         Loads Supports           Total         Available         Required         Dead         Snow           3.50"         Hanger1         1.50"         121         174           3.50"         Hanger1         1.50"         121         174 | Available         Required         Dead         Snow         Total           3.50"         Hanger1         1.50"         121         174         295           3.50"         Hanger1         1.50"         121         174         295 |

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                   | Bracing Intervals         | Comments |
|-----------------------------------|---------------------------|----------|
| Top Edge (Lu)                     | 5' o/c                    |          |
| Bottom Edge (Lu)                  | 5' o/c                    |          |
| •Maximum allowable bracing interv | als based on applied load |          |

| Connector: Simpson Strong-Tie |       |             |               |                |                  |             |  |  |  |  |
|-------------------------------|-------|-------------|---------------|----------------|------------------|-------------|--|--|--|--|
| Support                       | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |  |  |  |
| 1 - Face Mount Hanger         | LUS46 | 2.00"       | N/A           | 4-10dx1.5      | 4-10d            |             |  |  |  |  |
| 2 - Face Mount Hanger         | LUS46 | 2.00"       | N/A           | 4-10dx1.5      | 4-10d            |             |  |  |  |  |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                     |                 | Dead   | Snow   |              |
|-----------------------|---------------------|-----------------|--------|--------|--------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 3 1/2" to 5' 3 1/2" | N/A             | 6.4    |        |              |
| 1 - Uniform (PSF)     | 0 to 5' 7" (Front)  | 2' 6"           | 15.0   | 25.0   | Default Load |

### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Asrade Menastu Fossatti Pawlak Structural Engineers (206) 456-3071 amengstu@fossatti.com





### Roof, Roof Beam RB2 1 piece(s) 4 x 8 Hem-Fir No. 2

PASSED



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 464 @ 3 1/2"      | 2126 (1.50") | Passed (22%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 428 @ 10 3/4"     | 2918         | Passed (15%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 595 @ 3' 1 3/8"   | 3247         | Passed (18%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.014 @ 3' 9/16"  | 0.183        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.024 @ 3' 9/16"  | 0.275        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Applicable calculations are based on NDS.

|                              | Bearing Length |                     |          | Loads t | o Supports |       |             |
|------------------------------|----------------|---------------------|----------|---------|------------|-------|-------------|
| Supports                     | Total          | Available           | Required | Dead    | Snow       | Total | Accessories |
| 1 - Hanger on 7 1/4" HF beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 201     | 278        | 479   | See note 1  |
| 2 - Hanger on 7 1/4" HF beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 198     | 273        | 471   | See note 1  |

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                            | Bracing Intervals | Comments |  |  |
|------------------------------------------------------------|-------------------|----------|--|--|
| Top Edge (Lu)                                              | 5' 6" o/c         |          |  |  |
| Bottom Edge (Lu)                                           | 5' 6" o/c         |          |  |  |
| Maximum allowable bracing intervals based on applied load. |                   |          |  |  |

### Connector: Simpson Strong-Tie

| Support               | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
|-----------------------|-------|-------------|---------------|----------------|------------------|-------------|
| 1 - Face Mount Hanger | LUS46 | 2.00"       | N/A           | 4-10dx1.5      | 4-10d            |             |
| 2 - Face Mount Hanger | LUS46 | 2.00"       | N/A           | 4-10dx1.5      | 4-10d            |             |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                     |                 | Dead   | Snow   |                                             |
|-----------------------|---------------------|-----------------|--------|--------|---------------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.15) | Comments                                    |
| 0 - Self Weight (PLF) | 3 1/2" to 5' 9 1/2" | N/A             | 6.4    |        |                                             |
| 1 - Uniform (PSF)     | 0 to 6' 1" (Front)  | 1' 4"           | 15.0   | 25.0   | Default Load                                |
| 2 - Point (lb)        | 1' 6" (Front)       | N/A             | 121    | 174    | Linked from: Roof<br>Beam RB1, Support<br>1 |
| 3 - Point (lb)        | 4' 6" (Front)       | N/A             | 121    | 174    | Linked from: Roof<br>Beam RB1, Support<br>1 |

ForteWEB Software Operator Asrade Mengstu Fossatti Pawlak Structural Engineers (206) 456-3071 amengstu@fossatti.com



### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Asrade Mengstu Fossatti Pawlak Structural Engineers (206) 456-3071 amengstu@fossatti.com





#### Roof, Roof Valley Beam RB3 1 piece(s) 4 x 10 Hem-Fir No. 2

Sloped Length: 10' 4 7/16"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

**Design Results** Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs) 720 @ 2" 4961 (3.50") Passed (15%) 1.0 D + 1.0 S (All Spans) Shear (lbs) 556 @ 10 1/16" 3723 Passed (15%) 1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs) 1203 @ 3' 8" 4879 Passed (25%) 1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in) 0.036 @ 3' 8" 0.495 Passed (L/999+) 1.0 D + 1.0 S (All Spans) Total Load Defl. (in) 0.071 @ 3' 8" 0.660 Passed (L/999+) 1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 12/12

Member Length : 11' 1 11/16"

PASSED

• Deflection criteria: LL (L/240) and TL (L/180)

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                                                                                                                                      | Bearing Length |           |          | Loads to Supports (lbs) |      |       |             |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------|-------------------------|------|-------|-------------|
| Supports                                                                                                                             | Total          | Available | Required | Dead                    | Snow | Total | Accessories |
| 1 - Beveled Plate - SPF                                                                                                              | 3.50"          | 3.50"     | 1.50"    | 354                     | 367  | 721   | Blocking    |
| 2 - Beveled Plate - SPF                                                                                                              | 3.50"          | 3.50"     | 1.50"    | 354                     | 367  | 721   | Blocking    |
| Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. |                |           |          |                         |      |       |             |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 10' 4" o/c        |          |
| Bottom Edge (Lu) | 10' 4" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                 |                 | Dead   | Snow   |              |
|-----------------------|-----------------|-----------------|--------|--------|--------------|
| Vertical Loads        | Location (Side) | Tributary Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 7' 4"      | N/A             | 8.2    |        |              |
| 1 - Uniform (PSF)     | 0 to 7' 4"      | 4'              | 15.0   | 25.0   | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job N Asrade Mengstu Fossatti Pawlak Structural Engineers (206) 456-3071 amengstu@fossatti.com







### 2nd Floor, Floor: Joist FJ1 1 piece(s) 2 x 10 Hem-Fir No. 1 @ 16" OC



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location  | Allowed     | Result         | LDF  | Load: Combination (Pattern) |
|----------------------------|--------------------|-------------|----------------|------|-----------------------------|
| Member Reaction (lbs)      | 688 @ 3 1/2"       | 911 (1.50") | Passed (76%)   |      | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)                | 632 @ 1' 3/4"      | 1388        | Passed (46%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-Ibs)            | 1932 @ 6' 3/8"     | 2199        | Passed (88%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)       | 0.284 @ 6' 7 3/4"  | 0.325       | Passed (L/550) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in)      | 0.402 @ 6' 7 9/16" | 0.650       | Passed (L/388) |      | 1.0 D + 1.0 L (All Spans)   |
| TJ-Pro <sup>™</sup> Rating | N/A                | N/A         | N/A            |      | N/A                         |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

|                               | Bearing Length |                     |          | Loads to Supports (Ibs) |            |       |             |
|-------------------------------|----------------|---------------------|----------|-------------------------|------------|-------|-------------|
| Supports                      | Total          | Available           | Required | Dead                    | Floor Live | Total | Accessories |
| 1 - Hanger on 9 1/4" GLB beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 215                     | 494        | 709   | See note 1  |
| 2 - Hanger on 9 1/4" GLB beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 157                     | 397        | 554   | See note 1  |

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 4' 5" o/c         |          |
| Bottom Edge (Lu) | 13' o/c           |          |

•Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |       |             |               |                |                  |             |  |  |
|-------------------------------|-------|-------------|---------------|----------------|------------------|-------------|--|--|
| Support                       | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |  |
| 1 - Face Mount Hanger         | LUS28 | 1.75"       | N/A           | 6-10dx1.5      | 3-10d            |             |  |  |
| 2 - Face Mount Hanger         | LUS28 | 1.75"       | N/A           | 6-10dx1.5      | 3-10d            |             |  |  |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                   |                 |         | Dead   | Floor Live |              |
|-------------------|-----------------|---------|--------|------------|--------------|
| Vertical Loads    | Location (Side) | Spacing | (0.90) | (1.00)     | Comments     |
| 1 - Uniform (PSF) | 0 to 13' 7"     | 16"     | 15.0   | 40.0       | Default Load |
| 2 - Point (lb)    | 3'              | N/A     | 100    | 167        |              |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                                        | Job Notes |
|---------------------------------------------------------------------------------------------------|-----------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com |           |





### 2nd Floor, Floor: Joist FJ2 1 piece(s) 2 x 6 Hem-Fir No. 1 @ 16" OC

### Overall Length: 5' 7"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location | Allowed     | Result          | LDF  | Load: Combination (Pattern) |
|----------------------------|-------------------|-------------|-----------------|------|-----------------------------|
| Member Reaction (lbs)      | 212 @ 3 1/2"      | 911 (1.50") | Passed (23%)    |      | 1.0 D + 1.0 L (Alt Spans)   |
| Shear (lbs)                | 169 @ 3' 10"      | 825         | Passed (21%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)            | 216 @ 2' 3 15/16" | 919         | Passed (23%)    | 1.00 | 1.0 D + 1.0 L (Alt Spans)   |
| Live Load Defl. (in)       | 0.017 @ 2' 4 3/8" | 0.104       | Passed (L/999+) |      | 1.0 D + 1.0 L (Alt Spans)   |
| Total Load Defl. (in)      | 0.021 @ 2' 4 1/4" | 0.207       | Passed (L/999+) |      | 1.0 D + 1.0 L (Alt Spans)   |
| TJ-Pro <sup>™</sup> Rating | N/A               | N/A         | N/A             |      | N/A                         |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

|                               | Bearing Length |                     |          | Loads to Supports (Ibs) |            |       |             |
|-------------------------------|----------------|---------------------|----------|-------------------------|------------|-------|-------------|
| Supports                      | Total          | Available           | Required | Dead                    | Floor Live | Total | Accessories |
| 1 - Hanger on 5 1/2" GLB beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 53                      | 189        | 242   | See note 1  |
| 2 - Stud wall - HF            | 3.50"          | 3.50"               | 1.50"    | 81                      | 270        | 351   | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                            | Bracing Intervals | Comments |  |  |
|------------------------------------------------------------|-------------------|----------|--|--|
| Top Edge (Lu)                                              | 5' 4" o/c         |          |  |  |
| Bottom Edge (Lu)                                           | 5' 4" o/c         |          |  |  |
| Maximum allowable bracing intervals based on applied load. |                   |          |  |  |

| Connector: Simpson Strong-Tie |       |             |               |                |                  |             |  |
|-------------------------------|-------|-------------|---------------|----------------|------------------|-------------|--|
| Support                       | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |
| 1 - Face Mount Hanger         | LU26  | 1.50"       | N/A           | 6-10dx1.5      | 4-10dx1.5        |             |  |

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                   |                 |         | Dead   | Floor Live |              |
|-------------------|-----------------|---------|--------|------------|--------------|
| Vertical Load     | Location (Side) | Spacing | (0.90) | (1.00)     | Comments     |
| 1 - Uniform (PSF) | 0 to 5' 7"      | 16"     | 18.0   | 60.0       | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                                        | Job Notes |              |
|---------------------------------------------------------------------------------------------------|-----------|--------------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com | Ge        | Weyerhaeuser |



Page 1 / 1



### 2nd Floor, Floor: Joist FJ3 1 piece(s) 2 x 8 Hem-Fir No. 1 @ 24" OC



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location | Allowed     | Result          | LDF  | Load: Combination (Pattern) |
|----------------------------|-------------------|-------------|-----------------|------|-----------------------------|
| Member Reaction (lbs)      | 283 @ 7' 3 1/2"   | 911 (1.50") | Passed (31%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)                | 235 @ 6' 8 1/4"   | 1251        | Passed (19%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)            | 502 @ 3' 9"       | 1694        | Passed (30%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)       | 0.040 @ 3' 9"     | 0.177       | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in)      | 0.063 @ 3' 9"     | 0.354       | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| TJ-Pro <sup>™</sup> Rating | N/A               | N/A         | N/A             |      | N/A                         |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

|                              | Bearing Length |                     |          | Loads to Supports (lbs) |      |       |                  |
|------------------------------|----------------|---------------------|----------|-------------------------|------|-------|------------------|
| Supports                     | Total          | Available           | Required | Dead                    | Snow | Total | Accessories      |
| 1 - Stud wall - HF           | 3.50"          | 2.25"               | 1.50"    | 113                     | 187  | 300   | 1 1/4" Rim Board |
| 2 - Hanger on 7 1/4" HF beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 115                     | 192  | 307   | See note 1       |

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                            | Bracing Intervals | Comments |  |  |  |
|------------------------------------------------------------|-------------------|----------|--|--|--|
| Top Edge (Lu)                                              | 7' 2" o/c         |          |  |  |  |
| Bottom Edge (Lu)                                           | 7' 2" o/c         |          |  |  |  |
| Maximum allowable burning intervals based on analised land |                   |          |  |  |  |

Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |       |             |               |                |                  |             |
|-------------------------------|-------|-------------|---------------|----------------|------------------|-------------|
| Support                       | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 2 - Face Mount Hanger         | LU26  | 1.50"       | N/A           | 6-10dx1.5      | 4-10dx1.5        |             |
|                               |       |             |               |                |                  |             |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                   |                 |         | Dead   | Snow   |              |
|-------------------|-----------------|---------|--------|--------|--------------|
| Vertical Load     | Location (Side) | Spacing | (0.90) | (1.15) | Comments     |
| 1 - Uniform (PSF) | 0 to 7' 7"      | 24"     | 15.0   | 25.0   | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                                        | Job Notes |                |
|---------------------------------------------------------------------------------------------------|-----------|----------------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com | G1        | 0 Weyerhaeuser |

10/27/2020 1:00:56 AM UTC ForteWEB v3.0, Engine: V8.1.4.2, Data: V8.0.0.0 File Name: 20-129 9820 SE 35th Place Remodel Page 1 / 1



### 2nd Floor, Floor Beam FB1 1 piece(s) 7" x 9 1/4" 2.2E Parallam® PSL





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed       | Result         | LDF  | Load: Combination (Pattern)         |
|-----------------------|-------------------|---------------|----------------|------|-------------------------------------|
| Member Reaction (lbs) | 4095 @ 4"         | 24063 (5.50") | Passed (17%)   |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Shear (lbs)           | 3334 @ 1' 2 3/4"  | 12518         | Passed (27%)   | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Moment (Ft-lbs)       | 13586 @ 7' 5 1/2" | 24831         | Passed (55%)   | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Live Load Defl. (in)  | 0.319 @ 7' 5 1/2" | 0.475         | Passed (L/537) |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Total Load Defl. (in) | 0.524 @ 7' 5 1/2" | 0.712         | Passed (L/326) |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

|                                                                                                                                      | Bearing Length |           |          | L    | oads to Supp |      |       |             |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------|------|--------------|------|-------|-------------|
| Supports                                                                                                                             | Total          | Available | Required | Dead | Floor Live   | Snow | Total | Accessories |
| 1 - Column - DF                                                                                                                      | 5.50"          | 5.50"     | 1.50"    | 1605 | 2387         | 932  | 4924  | Blocking    |
| 2 - Column - DF                                                                                                                      | 5.50"          | 5.50"     | 1.50"    | 1605 | 2387         | 932  | 4924  | Blocking    |
| Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. |                |           |          |      |              |      |       |             |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 14' 11" o/c       |          |
| Bottom Edge (Lu) | 14' 11" o/c       |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                      |                 | Dead   | Floor Live | Snow   |              |
|-----------------------|----------------------|-----------------|--------|------------|--------|--------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 14' 11"         | N/A             | 20.2   |            |        |              |
| 1 - Uniform (PSF)     | 0 to 14' 11" (Front) | 8'              | 15.0   | 40.0       | -      | Default Load |
| 2 - Uniform (PSF)     | 0 to 14' 11" (Front) | 5'              | 15.0   | -          | 25.0   | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                                        |
|---------------------------------------------------------------------------------------------------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com |
| J                                                                                                 |





### 2nd Floor, Floor Beam FB2 1 piece(s) 7" x 11 1/4" 2.2E Parallam® PSL





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed       | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|---------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 4688 @ 4"         | 24063 (5.50") | Passed (19%)   |      | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)           | 3996 @ 1' 4 3/4"  | 15225         | Passed (26%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-Ibs)       | 20634 @ 9' 5 1/2" | 35940         | Passed (57%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.512 @ 9' 5 1/2" | 0.608         | Passed (L/428) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in) | 0.704 @ 9' 5 1/2" | 0.913         | Passed (L/311) |      | 1.0 D + 1.0 L (All Spans)   |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

|                                                                                                                                      | Bearing Length |           |          | L    | oads to Supp |      |       |             |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------|------|--------------|------|-------|-------------|
| Supports                                                                                                                             | Total          | Available | Required | Dead | Floor Live   | Snow | Total | Accessories |
| 1 - Column - DF                                                                                                                      | 5.50"          | 5.50"     | 1.50"    | 1283 | 3405         | 473  | 5161  | Blocking    |
| 2 - Column - DF                                                                                                                      | 5.50"          | 5.50"     | 1.50"    | 1283 | 3405         | 473  | 5161  | Blocking    |
| Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. |                |           |          |      |              |      |       |             |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 18' 11" o/c       |          |
| Bottom Edge (Lu) | 18' 11" o/c       |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                      |                 | Dead   | Floor Live | Snow   |              |
|-----------------------|----------------------|-----------------|--------|------------|--------|--------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 18' 11"         | N/A             | 24.6   |            |        |              |
| 1 - Uniform (PSF)     | 0 to 18' 11" (Front) | 3'              | 15.0   | 40.0       | -      | Default Load |
| 2 - Uniform (PSF)     | 0 to 18' 11" (Front) | 2'              | 18.0   | 60.0       | -      | Default Load |
| 3 - Uniform (PSF)     | 0 to 18' 11" (Front) | 2'              | 15.0   | 60.0       | 25.0   | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                               |
|--------------------------------------------------------------------------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071 |
| amengstu@fossatti.com                                                    |

Job Notes

G12

## <u>FB5</u>

| STEEL C                                    | CODE: AISC                                                            | <b>360-05</b> A                                             | ASD                       |                                       |               |         |      |       |          |                 |  |
|--------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|---------------------------|---------------------------------------|---------------|---------|------|-------|----------|-----------------|--|
| SPAN IN<br>Beam<br>Total<br>Mp (I<br>Top f | FORMATIC<br>Size (User S<br>Beam Length<br>cip-ft) =<br>lange not bra | <b>DN (ft):</b><br>elected)<br>n (ft)<br>41.40<br>ced by de | I-End (0.0<br>=<br>cking. | <b>0,0.00) J</b><br>HSS7X4X1<br>17.50 | -End (1<br>/4 | 7.50,0. | 00)  | Fy =  | 46.0 ksi |                 |  |
| LINE LC                                    | ADS (k/ft):                                                           |                                                             |                           |                                       |               |         |      |       |          |                 |  |
| Load                                       | Dist (ft)                                                             | DL                                                          | LL                        |                                       |               |         |      |       |          |                 |  |
| 1                                          | 0.000                                                                 | 0.016                                                       | 0.000                     |                                       |               |         |      |       |          |                 |  |
|                                            | 17.500                                                                | 0.016                                                       | 0.000                     |                                       |               |         |      |       |          |                 |  |
| 2                                          | 0.000                                                                 | 0.130                                                       | 0.163                     |                                       |               |         |      |       |          |                 |  |
|                                            | 17.500                                                                | 0.130                                                       | 0.163                     |                                       |               |         |      |       |          |                 |  |
| SHEAR:                                     | SHEAR: Max Va (DL+LL) = 2.71 kips Vn/1.67 = 53.91 kips                |                                                             |                           |                                       |               |         |      |       |          |                 |  |
| MOMEN                                      | TS:                                                                   |                                                             |                           |                                       |               |         |      |       |          |                 |  |
| Span                                       | Cond                                                                  | Load                                                        | lCombo                    | Ma                                    | (             | Ŋ       | Lb   | Cb    | Ω        | $Mn$ / $\Omega$ |  |
|                                            |                                                                       |                                                             |                           | kip-ft                                | 1             | ft      | ft   |       |          | kip-ft          |  |
| Center                                     | Max +                                                                 | DL+                                                         | LL                        | 11.8                                  | 8.            | 8       | 17.5 | 1.14  | 1.67     | 24.79           |  |
| Controllir                                 | ng                                                                    | DL+                                                         | ·LL                       | 11.8                                  | 8.            | 8       | 17.5 | 1.14  | 1.67     | 24.79           |  |
| REACTI                                     | ONS (kips):                                                           |                                                             |                           |                                       |               |         |      |       |          |                 |  |
|                                            |                                                                       |                                                             |                           | Left                                  | Right         |         |      |       |          |                 |  |
| DL re                                      | eaction                                                               |                                                             |                           | 1.28                                  | 1.28          |         |      |       |          |                 |  |
| Max                                        | +LL reaction                                                          |                                                             |                           | 1.43                                  | 1.43          |         |      |       |          |                 |  |
| Max                                        | +total reaction                                                       | n                                                           |                           | 2.71                                  | 2.71          |         |      |       |          |                 |  |
| DEFLEC                                     | TIONS:                                                                |                                                             |                           |                                       |               |         |      |       |          |                 |  |
| Dead                                       | load (in)                                                             |                                                             | at                        | 8.75 ft                               | =             | -0.34   | 9    | L/D = | 602      |                 |  |
| Live                                       | load (in)                                                             |                                                             | at                        | 8.75 ft                               | =             | -0.38   | 9    | L/D = | 540      |                 |  |
| Net T                                      | otal load (in)                                                        |                                                             | at                        | 8.75 ft                               | =             | -0.73   | 8    | L/D = | 285      |                 |  |

11/03/20 13:55:26



RAM SBeam v5.0

### FB6

11/03/20 14:23:14

### **STEEL CODE: AISC 360-05 ASD**

#### SPAN INFORMATION (ft): I-End (0.00,0.00) J-End (19.50,0.00) Beam Size (User Selected) = HSS7X7X1/2

Total Beam Length (ft) = 19.50 Cantilever on right (ft) = 1.50 Mp (kip-ft) = 106.95 Top flange not braced by decking.

### **POINT LOADS (kips):**

|           |      |      | Flange | Bracing |
|-----------|------|------|--------|---------|
| Dist (ft) | DL   | LL   | Тор    | Bottom  |
| 5.000     | 1.24 | 1.35 | No     | No      |
| 11.000    | 1.28 | 1.43 | No     | No      |
| 19.500    | 0.62 | 0.55 | No     | No      |

### LINE LOADS (k/ft):

| Load | Dist (ft) | DL    | LL    |
|------|-----------|-------|-------|
| 1    | 0.000     | 0.039 | 0.000 |
|      | 18.000    | 0.039 | 0.000 |
| 2    | 0.000     | 0.040 | 0.050 |
|      | 18.000    | 0.040 | 0.050 |
| 3    | 18.000    | 0.039 | 0.000 |
|      | 19.500    | 0.039 | 0.000 |
| 4    | 18.000    | 0.040 | 0.050 |
|      | 19.500    | 0.040 | 0.050 |

### SHEAR: Max Va (DL+LL) = 4.03 kips Vn/1.67 = 107.59 kips

### **MOMENTS:**

| Span        | Cond  | LoadCombo | Ma     | (a)  | Lb   | Cb   | Ω    | $Mn / \Omega$ |
|-------------|-------|-----------|--------|------|------|------|------|---------------|
|             |       |           | kip-ft | ft   | ft   |      |      | kip-ft        |
| Center      | Max + | DL+LL     | 21.0   | 11.0 | 18.0 | 1.15 | 1.67 | 64.04         |
|             | Max - | DL+LL     | -1.9   | 18.0 | 18.0 | 1.15 | 1.67 | 64.04         |
| Right       | Max - | DL+LL     | -1.9   | 18.0 | 1.5  | 1.00 | 1.67 | 64.04         |
| Controlling |       | DL+LL     | 21.0   | 11.0 | 18.0 | 1.15 | 1.67 | 64.04         |

### **REACTIONS** (kips):

|                     |    | Left  | Right |        |       |     |
|---------------------|----|-------|-------|--------|-------|-----|
| DL reaction         |    | 2.05  | 2.64  |        |       |     |
| Max +LL reaction    |    | 1.98  | 2.37  |        |       |     |
| Max -LL reaction    |    | -0.05 | 0.00  |        |       |     |
| Max +total reaction |    | 4.03  | 5.01  |        |       |     |
| <b>DEFLECTIONS:</b> |    |       |       |        |       |     |
| Center span:        |    |       |       |        |       |     |
| Dead load (in)      | at | 8.91  | ft =  | -0.256 | L/D = | 844 |
| Live load (in)      | at | 8.91  | ft =  | -0.261 | L/D = | 827 |
| Net Total load (in) | at | 8.91  | ft =  | -0.517 | L/D = | 418 |
|                     |    |       |       |        |       |     |

Fy = 46.0 ksi



RAM SBeam v5.0

Page 2/2 11/03/20 14:23:14

| = | 0.063       | L/D =                                       | 576                                                  |
|---|-------------|---------------------------------------------|------------------------------------------------------|
| = | -0.006      | L/D =                                       | 5667                                                 |
| = | 0.067       | L/D =                                       | 537                                                  |
| = | 0.130       | L/D =                                       | 278                                                  |
|   | =<br>=<br>= | $= 0.063 \\ = -0.006 \\ = 0.067 \\ = 0.130$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |

## <u>FB7</u>

| STEEL                                  | CODE: AISO                                                                   | C 360-05 AS                                                          | SD                          |                                        |                        |         |      |       |          |                 |
|----------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|----------------------------------------|------------------------|---------|------|-------|----------|-----------------|
| SPAN IN<br>Bear<br>Tota<br>Mp (<br>Top | NFORMATION<br>n Size (User S<br>l Beam Lengt<br>(kip-ft) =<br>flange not bra | <b>ON (ft): I-</b><br>Selected)<br>h (ft)<br>= 59.42<br>aced by deck | End (0.(<br>=<br>=<br>ting. | <b>)0,0.00) J</b><br>HSS7X7X1<br>17.50 | [ <b>-End (1</b><br>/4 | 7.50,0. | .00) | Fy =  | 46.0 ksi |                 |
| LINE LO                                | DADS (k/ft):                                                                 |                                                                      |                             |                                        |                        |         |      |       |          |                 |
| Load                                   | Dist (ft)                                                                    | DL                                                                   | LL                          |                                        |                        |         |      |       |          |                 |
| 1                                      | 0.000                                                                        | 0.021                                                                | 0.000                       |                                        |                        |         |      |       |          |                 |
|                                        | 17.500                                                                       | 0.021                                                                | 0.000                       |                                        |                        |         |      |       |          |                 |
| 2                                      | 0.000                                                                        | 0.050                                                                | 0.063                       |                                        |                        |         |      |       |          |                 |
|                                        | 17.500                                                                       | 0.050                                                                | 0.063                       |                                        |                        |         |      |       |          |                 |
| SHEAR:                                 | : Max Va (D                                                                  | L+LL) = 1.                                                           | 17 kips                     | Vn/1.67 =                              | 53.91 k                | ips     |      |       |          |                 |
| MOMEN                                  | NTS:                                                                         |                                                                      |                             |                                        |                        |         |      |       |          |                 |
| Span                                   | Cond                                                                         | LoadC                                                                | Combo                       | Ma                                     | (                      | Ŋ       | Lb   | Cb    | Ω        | $Mn$ / $\Omega$ |
|                                        |                                                                              |                                                                      |                             | kip-ft                                 |                        | ft      | ft   |       |          | kip-ft          |
| Center                                 | Max +                                                                        | DL+L                                                                 | L                           | 5.1                                    | 8.                     | 8       | 17.5 | 1.14  | 1.67     | 35.58           |
| Controlli                              | ng                                                                           | DL+L                                                                 | L                           | 5.1                                    | 8.                     | 8       | 17.5 | 1.14  | 1.67     | 35.58           |
| REACT                                  | IONS (kips):                                                                 |                                                                      |                             |                                        |                        |         |      |       |          |                 |
|                                        |                                                                              |                                                                      |                             | Left                                   | Right                  |         |      |       |          |                 |
| DL r                                   | reaction                                                                     |                                                                      |                             | 0.62                                   | 0.62                   |         |      |       |          |                 |
| Max                                    | +LL reaction                                                                 | l                                                                    |                             | 0.55                                   | 0.55                   |         |      |       |          |                 |
| Max                                    | +total reaction                                                              | on                                                                   |                             | 1.17                                   | 1.17                   |         |      |       |          |                 |
| DEFLEC                                 | CTIONS:                                                                      |                                                                      |                             |                                        |                        |         |      |       |          |                 |
| Dead                                   | l load (in)                                                                  |                                                                      | at                          | 8.75 ft                                | =                      | -0.11   | 1    | L/D = | 1890     |                 |
| Live                                   | load (in)                                                                    |                                                                      | at                          | 8.75 ft                                | =                      | -0.09   | 9    | L/D = | 2130     |                 |
| Net [                                  | Total load (in                                                               | )                                                                    | at                          | 8.75 ft                                | =                      | -0.21   | 0    | L/D = | 1001     |                 |



RAM SBeam v5.0

### 11/03/20 14:05:53

### <u>FB8</u>

RAM SBeam v5.0

11/03/20 14:09:36

Fy = 46.0 ksi

### STEEL CODE: AISC 360-05 ASD

# SPAN INFORMATION (ft):I-End (0.00,0.00)J-End (13.50,0.00)Beam Size (User Selected)=HSS7X7X1/4

Total Beam Length (ft) = 13.50Cantilever on right (ft) = 1.50Mp (kip-ft) = 59.42Top flange not braced by decking.

### **POINT LOADS (kips):**

|           |      |      | Flange | Bracing |
|-----------|------|------|--------|---------|
| Dist (ft) | DL   | LL   | Тор    | Bottom  |
| 6.000     | 1.28 | 1.43 | No     | No      |
| 13.500    | 0.62 | 0.55 | No     | No      |

### LINE LOADS (k/ft):

| Load | Dist (ft) | DL    | LL    |
|------|-----------|-------|-------|
| 1    | 0.000     | 0.021 | 0.000 |
|      | 12.000    | 0.021 | 0.000 |
| 2    | 0.000     | 0.040 | 0.050 |
|      | 12.000    | 0.040 | 0.050 |
| 3    | 12.000    | 0.021 | 0.000 |
|      | 13.500    | 0.021 | 0.000 |
| 4    | 12.000    | 0.040 | 0.050 |
|      | 13.500    | 0.040 | 0.050 |

### SHEAR: Max Va (DL+LL) = 2.18 kips Vn/1.67 = 53.91 kips

### **MOMENTS:**

| Span        | Cond  | LoadCombo | Ma     | (a)  | Lb   | Cb   | Ω    | $Mn$ / $\Omega$ |
|-------------|-------|-----------|--------|------|------|------|------|-----------------|
|             |       |           | kip-ft | ft   | ft   |      |      | kip-ft          |
| Center      | Max + | DL+LL     | 9.6    | 6.0  | 12.0 | 1.29 | 1.67 | 35.58           |
|             | Max - | DL+LL     | -1.9   | 12.0 | 12.0 | 1.36 | 1.67 | 35.58           |
| Right       | Max - | DL+LL     | -1.9   | 12.0 | 1.5  | 1.00 | 1.67 | 35.58           |
| Controlling |       | DL+LL     | 9.6    | 6.0  | 12.0 | 1.29 | 1.67 | 35.58           |

### **REACTIONS (kips):**

|                     | Left  | Right |
|---------------------|-------|-------|
| DL reaction         | 0.92  | 1.80  |
| Max +LL reaction    | 1.01  | 1.71  |
| Max -LL reaction    | -0.07 | 0.00  |
| Max +total reaction | 1.94  | 3.51  |
| <b>DEFLECTIONS:</b> |       |       |
| Center span:        |       |       |

| Dead load (in)      | at | 5.94 ft = | -0.069 | L/D = | 2097 |
|---------------------|----|-----------|--------|-------|------|
| Live load (in)      | at | 5.94 ft = | -0.083 | L/D = | 1730 |
| Net Total load (in) | at | 5.94 ft = | -0.152 | L/D = | 948  |



RAM SBeam v5.0

Page 2/2 11/03/20 14:09:36

| = | 0.022       | L/D =                                       | 1639                                                                                                              |
|---|-------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| = | -0.008      | L/D =                                       | 4731                                                                                                              |
| = | 0.032       | L/D =                                       | 1137                                                                                                              |
| = | 0.054       | L/D =                                       | 671                                                                                                               |
|   | =<br>=<br>= | $= 0.022 \\ = -0.008 \\ = 0.032 \\ = 0.054$ | $\begin{array}{ll} = & 0.022 & L/D = \\ = & -0.008 & L/D = \\ = & 0.032 & L/D = \\ = & 0.054 & L/D = \end{array}$ |

### FB9



RAM SBeam v5.0

11/03/20 14:16:55

### **STEEL CODE: AISC 360-05 ASD**

#### SPAN INFORMATION (ft): I-End (0.00,0.00) J-End (18.00,0.00) Beam Size (User Selected) = HSS7X4X1/4 Total Beam Length (ft) = 18.00

Fy = 46.0 ksi

Mp (kip-ft) Top flange not braced by decking.

=

41.40

### **POINT LOADS (kips):**

|           |      |      | Flange | Bracing |
|-----------|------|------|--------|---------|
| Dist (ft) | DL   | LL   | Тор    | Bottom  |
| 1.000     | 0.92 | 1.00 | No     | No      |
| 1.000     | 1.00 | 1.00 | No     | No      |

### LINE LOADS (k/ft):

| Load | Dist (ft) | DL    | LL    |
|------|-----------|-------|-------|
| 1    | 0.000     | 0.016 | 0.000 |
|      | 18.000    | 0.016 | 0.000 |
| 2    | 0.000     | 0.110 | 0.138 |
|      | 18.000    | 0.110 | 0.138 |

### SHEAR: Max Va (DL+LL) = 6.08 kips Vn/1.67 = 53.91 kips

### **MOMENTS:**

| Span        | Cond        | LoadCombo | Ma      | L     | a    | Lb   | Cb    | Ω    | Mn / $\Omega$ |
|-------------|-------------|-----------|---------|-------|------|------|-------|------|---------------|
|             |             |           | kip-ft  | t     | ft   | ft   |       |      | kip-ft        |
| Center      | Max +       | DL+LL     | 12.8    | 8     | .2   | 18.0 | 1.12  | 1.67 | 24.79         |
| Controlling |             | DL+LL     | 12.8    | 8 8   | .2   | 18.0 | 1.12  | 1.67 | 24.79         |
| REACTION    | S (kips):   |           |         |       |      |      |       |      |               |
|             |             |           | Left    | Right |      |      |       |      |               |
| DL reacti   | ion         |           | 2.95    | 1.24  |      |      |       |      |               |
| Max +LL     | reaction    |           | 3.13    | 1.35  |      |      |       |      |               |
| Max +tot    | al reaction |           | 6.08    | 2.60  |      |      |       |      |               |
| DEFLECTIO   | ONS:        |           |         |       |      |      |       |      |               |
| Dead load   | d (in)      | at        | 8.73 fi | t =   | -0.4 | 13   | L/D = | 523  |               |
| Live load   | l (in)      | at        | 8.73 ft | t =   | -0.4 | 48   | L/D = | 483  |               |
| Net Total   | l load (in) | at        | 8.73 f  | t =   | -0.8 | 61   | L/D = | 251  |               |



#### 2nd Floor, Floor Beam FB10 1 piece(s) 4 x 10 Hem-Fir No. 2





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location   | Allowed      | Result          | LDF  | Load: Combination (Pattern)         |
|-----------------------|---------------------|--------------|-----------------|------|-------------------------------------|
| Member Reaction (lbs) | 950 @ 5 1/2"        | 2126 (1.50") | Passed (45%)    |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Shear (lbs)           | 897 @ 1' 2 3/4"     | 3723         | Passed (24%)    | 1.15 | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Moment (Ft-lbs)       | 2202 @ 6' 1 5/16"   | 4242         | Passed (52%)    | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Live Load Defl. (in)  | 0.126 @ 6' 8 3/8"   | 0.433        | Passed (L/999+) |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Total Load Defl. (in) | 0.239 @ 6' 7 11/16" | 0.650        | Passed (L/653)  |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                               | Bearing Length |                     |          | L    | oads to Supp |      |       |             |
|-------------------------------|----------------|---------------------|----------|------|--------------|------|-------|-------------|
| Supports                      | Total          | Available           | Required | Dead | Floor Live   | Snow | Total | Accessories |
| 1 - Hanger on 9 1/4" PSL beam | 5.50"          | Hanger <sup>1</sup> | 1.50"    | 477  | 371          | 295  | 1143  | See note 1  |
| 2 - Hanger on 9 1/4" DF beam  | 5.50"          | Hanger <sup>1</sup> | 1.50"    | 262  | 371          | 72   | 705   | See note 1  |

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                   | Bracing Intervals         | Comments |
|-----------------------------------|---------------------------|----------|
| Top Edge (Lu)                     | 13' o/c                   |          |
| Bottom Edge (Lu)                  | 13' o/c                   |          |
| •Maximum allowable bracing interv | als based on applied load |          |

| Connector: Simpson Strong-Tie |       |             |               |                |                  |             |  |  |  |  |
|-------------------------------|-------|-------------|---------------|----------------|------------------|-------------|--|--|--|--|
| Support                       | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |  |  |  |
| 1 - Face Mount Hanger         | LUS48 | 2.00"       | N/A           | 6-10dx1.5      | 4-10d            |             |  |  |  |  |
| 2 - Face Mount Hanger         | LUS48 | 2.00"       | N/A           | 6-10dx1.5      | 4-10d            |             |  |  |  |  |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                      |                 | Dead   | Floor Live | Snow   |                                                    |
|-----------------------|----------------------|-----------------|--------|------------|--------|----------------------------------------------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments                                           |
| 0 - Self Weight (PLF) | 5 1/2" to 13' 5 1/2" | N/A             | 8.2    |            |        |                                                    |
| 1 - Uniform (PSF)     | 0 to 13' 11" (Front) | 1' 4"           | 15.0   | 40.0       | -      | Default Load                                       |
| 2 - Point (Ib)        | 3' (Top)             | N/A             | 354    | -          | 367    | Linked from: Roof<br>Valley Beam RB3,<br>Support 2 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

everhaeuser

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                                        | Job Notes |      |
|---------------------------------------------------------------------------------------------------|-----------|------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com |           | G20, |

10/22/2020 9:11:39 PM UTC ForteWEB v3.0, Engine: V8.1.4.2, Data: V8.0.0.0 File Name: 20-129 9820 SE 35th Place Remodel Page 1 / 1



#### 2nd Floor, Header Beam HB1 1 piece(s) 4 x 10 Hem-Fir No. 2



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed      | Result          | LDF  | Load: Combination (Pattern)                      |
|-----------------------|--------------------|--------------|-----------------|------|--------------------------------------------------|
| Member Reaction (lbs) | 1061 @ 1 1/2"      | 4253 (3.00") | Passed (25%)    |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Shear (Ibs)           | 892 @ 1' 1/4"      | 5180         | Passed (17%)    | 1.60 | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Moment (Ft-lbs)       | 1585 @ 4' 9"       | 4242         | Passed (37%)    | 1.00 | 1.0 D + 1.0 L (All Spans)                        |
| Live Load Defl. (in)  | 0.062 @ 5' 4 9/16" | 0.308        | Passed (L/999+) |      | 1.0 D - 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Total Load Defl. (in) | 0.099 @ 5' 2 1/8"  | 0.463        | Passed (L/999+) |      | 1.0 D - 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Applicable calculations are based on NDS.

|                    | Bearing Length |           |          | Loads to Supports (lbs) |            |      |          |               |             |
|--------------------|----------------|-----------|----------|-------------------------|------------|------|----------|---------------|-------------|
| Supports           | Total          | Available | Required | Dead                    | Floor Live | Snow | Seismic  | Total         | Accessories |
| 1 - Stud wall - HF | 3.00"          | 3.00"     | 1.50"    | 324                     | 380        | 237  | 522/-522 | 1463/-<br>522 | Blocking    |
| 2 - Stud wall - HF | 3.00"          | 3.00"     | 1.50"    | 324                     | 380        | 238  | 522/-522 | 1464/-<br>522 | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 9' 6" o/c         |          |
| Bottom Edge (Lu) | 9' 6" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                    |                 | Dead   | Floor Live | Snow   | Seismic |              |
|-----------------------|--------------------|-----------------|--------|------------|--------|---------|--------------|
| Vertical Loads        | Location (Side)    | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60)  | Comments     |
| 0 - Self Weight (PLF) | 0 to 9' 6"         | N/A             | 8.2    |            |        |         |              |
| 1 - Uniform (PSF)     | 0 to 9' 6" (Front) | 2'              | 15.0   | 40.0       | -      | -       | Default Load |
| 2 - Uniform (PSF)     | 0 to 9' 6" (Front) | 2'              | 15.0   | -          | 25.0   | -       | Default Load |
| 3 - Point (lb)        | 2' 6" (Front)      | N/A             | -      | -          | -      | 1207    |              |
| 4 - Point (lb)        | 6' 6" (Front)      | N/A             | -      | -          | -      | -1207   |              |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Asrade Mengstu Fossatti Pawlak Structural Engineers (206) 456-3071 amengstu@fossatti.com





### 2nd Floor, Header Beam HB1 w/omega 1 piece(s) 4 x 10 Hem-Fir No. 2

Overall Length: 9' 6"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern)                      |  |
|-----------------------|-------------------|--------------|-----------------|------|--------------------------------------------------|--|
| Member Reaction (lbs) | 1472 @ 1 1/2"     | 4253 (3.00") | Passed (35%)    |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |  |
| Shear (lbs)           | 1352 @ 2' 6"      | 5180         | Passed (26%)    | 1.60 | 1.0 D - 0.7 E (All Spans)                        |  |
| Moment (Ft-Ibs)       | 3488 @ 6' 6"      | 6788         | Passed (51%)    | 1.60 | 1.0 D - 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |  |
| Live Load Defl. (in)  | 0.077 @ 5' 9 1/2" | 0.308        | Passed (L/999+) |      | 1.0 D - 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |  |
| Total Load Defl. (in) | 0.113 @ 5' 6 5/8" | 0.463        | Passed (L/983)  |      | 1.0 D - 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |  |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• -719 lbs uplift at support located at 1 1/2". Strapping or other restraint may be required.

• -719 lbs uplift at support located at 9' 4 1/2". Strapping or other restraint may be required.

• Applicable calculations are based on NDS.

|                    | Bearing Length |           | Loads to Supports (Ibs) |      |            |      |            |                |             |
|--------------------|----------------|-----------|-------------------------|------|------------|------|------------|----------------|-------------|
| Supports           | Total          | Available | Required                | Dead | Floor Live | Snow | Seismic    | Total          | Accessories |
| 1 - Stud wall - HF | 3.00"          | 3.00"     | 1.50"                   | 324  | 380        | 237  | 1305/-1305 | 2246/-<br>1305 | Blocking    |
| 2 - Stud wall - HF | 3.00"          | 3.00"     | 1.50"                   | 324  | 380        | 238  | 1305/-1305 | 2247/-<br>1305 | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing                                            | Bracing Intervals | Comments |  |  |  |
|------------------------------------------------------------|-------------------|----------|--|--|--|
| Top Edge (Lu)                                              | 9' 6" o/c         |          |  |  |  |
| Bottom Edge (Lu)                                           | 9' 6" o/c         |          |  |  |  |
| Maximum allowable bracing intervals based on applied load. |                   |          |  |  |  |

|                       |                    |                 | Dead   | Floor Live | Snow   | Seismic |              |
|-----------------------|--------------------|-----------------|--------|------------|--------|---------|--------------|
| Vertical Loads        | Location (Side)    | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60)  | Comments     |
| 0 - Self Weight (PLF) | 0 to 9' 6"         | N/A             | 8.2    |            |        |         |              |
| 1 - Uniform (PSF)     | 0 to 9' 6" (Front) | 2'              | 15.0   | 40.0       | -      | -       | Default Load |
| 2 - Uniform (PSF)     | 0 to 9' 6" (Front) | 2'              | 15.0   | -          | 25.0   | -       | Default Load |
| 3 - Point (lb)        | 2' 6" (Front)      | N/A             | -      | -          | -      | 3018    |              |
| 4 - Point (lb)        | 6' 6" (Front)      | N/A             | -      | -          | -      | -3018   |              |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                                        | Job Notes |                   |
|---------------------------------------------------------------------------------------------------|-----------|-------------------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com | G2        | 2<br>Weyerhaeuser |

10/27/2020 1:01:14 AM UTC ForteWEB v3.0, Engine: V8.1.4.2, Data: V8.0.0.0 File Name: 20-129 9820 SE 35th Place Remodel Page 1 / 1





### 1st Floor, Floor: Joist FJ1 1 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL @ 16" OC

#### Overall Length: 14' 9"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location  | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|----------------------------|--------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs)      | 662 @ 2 1/2"       | 1595 (2.25") | Passed (42%)   |      | 1.0 D + 1.0 L (Alt Spans)   |
| Shear (lbs)                | 589 @ 11' 8 1/4"   | 2411         | Passed (24%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)            | 1988 @ 6' 3 3/4"   | 3700         | Passed (54%)   | 1.00 | 1.0 D + 1.0 L (Alt Spans)   |
| Live Load Defl. (in)       | 0.331 @ 6' 4 3/8"  | 0.410        | Passed (L/446) |      | 1.0 D + 1.0 L (Alt Spans)   |
| Total Load Defl. (in)      | 0.433 @ 6' 4 3/16" | 0.616        | Passed (L/341) |      | 1.0 D + 1.0 L (Alt Spans)   |
| TJ-Pro <sup>™</sup> Rating | 42                 | 40           | Passed         |      |                             |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240). Upward deflection on right cantilever exceeds overhang deflection criteria.

· Allowed moment does not reflect the adjustment for the beam stability factor.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

· A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro<sup>™</sup> Rating include: None.

|                                                                                                         | Bearing Length |           |          | Loads t | o Supports ( |        |                  |
|---------------------------------------------------------------------------------------------------------|----------------|-----------|----------|---------|--------------|--------|------------------|
| Supports                                                                                                | Total          | Available | Required | Dead    | Floor Live   | Total  | Accessories      |
| 1 - Stud wall - HF                                                                                      | 3.50"          | 2.25"     | 1.50"    | 164     | 509/-8       | 673/-8 | 1 1/4" Rim Board |
| 2 - Stud wall - HF                                                                                      | 5.50"          | 5.50"     | 1.50"    | 229     | 687          | 916    | Blocking         |
| Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed. |                |           |          |         |              |        |                  |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing                                            | Bracing Intervals | Comments |  |  |  |
|------------------------------------------------------------|-------------------|----------|--|--|--|
| Top Edge (Lu)                                              | 14' 2" o/c        |          |  |  |  |
| Bottom Edge (Lu)                                           | 14' 8" o/c        |          |  |  |  |
| Maximum allowable bracing intervals based on applied load. |                   |          |  |  |  |

|                   |                 |         | Dead   | Floor Live |              |
|-------------------|-----------------|---------|--------|------------|--------------|
| Vertical Load     | Location (Side) | Spacing | (0.90) | (1.00)     | Comments     |
| 1 - Uniform (PSF) | 0 to 14' 9"     | 16"     | 20.0   | 60.0       | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Responsible to assume that this calculation is compatible with the overall project. Accessories (thin board, blocking raines and splats) blocks are third-pagine. For the same structure of the weather that the same structure of the structure and the structure of www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Asrade Menastu Fossatti Pawlak Structural Engineers (206) 456-3071 amengstu@fossatti.com





### 1st Floor, Floor: Joist FJ2 1 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL @ 16" OC

Overall Length: 20' 8 1/2"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location   | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|----------------------------|---------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs)      | 1438 @ 6' 1/4"      | 4091 (5.50") | Passed (35%)   |      | 1.0 D + 1.0 L (Adj Spans)   |
| Shear (lbs)                | 735 @ 6' 10 1/4"    | 2411         | Passed (31%)   | 1.00 | 1.0 D + 1.0 L (Adj Spans)   |
| Moment (Ft-Ibs)            | -1624 @ 6' 1/4"     | 3700         | Passed (44%)   | 1.00 | 1.0 D + 1.0 L (Adj Spans)   |
| Live Load Defl. (in)       | 0.212 @ 12' 9 1/8"  | 0.415        | Passed (L/706) |      | 1.0 D + 1.0 L (Alt Spans)   |
| Total Load Defl. (in)      | 0.287 @ 12' 9 1/16" | 0.623        | Passed (L/520) |      | 1.0 D + 1.0 L (Alt Spans)   |
| TJ-Pro <sup>™</sup> Rating | 43                  | 40           | Passed         |      |                             |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240). • Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro<sup>™</sup> Rating include: None.

|                              | Bearing Length |           |          | Loads t | o Supports ( |              |             |
|------------------------------|----------------|-----------|----------|---------|--------------|--------------|-------------|
| Supports                     | Total          | Available | Required | Dead    | Floor Live   | Total        | Accessories |
| 1 - Hanger on 7 1/4" HF beam | 3.50"          | Hanger1   | 1.50"    | 25      | 246/-162     | 271/-<br>162 | See note 1  |
| 2 - Stud wall - SPF          | 5.50"          | 5.50"     | 1.93"    | 413     | 1025         | 1438         | None        |
| 3 - Stud wall - HF           | 5.50"          | 5.50"     | 1.50"    | 252     | 613          | 865          | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 19' 10" o/c       |          |
| Bottom Edge (Lu) | 17' 8" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-T                                                                     | ie       |             |               |                |                  |             |
|-------------------------------------------------------------------------------------------------|----------|-------------|---------------|----------------|------------------|-------------|
| Support                                                                                         | Model    | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 1 - Face Mount Hanger                                                                           | HU1.81/5 | 2.50"       | N/A           | 12-10dx1.5     | 4-10dx1.5        |             |
| Refer to manufacturer notes and instructions for proper installation and use of all connectors. |          |             |               |                |                  |             |

G25

Weverhaeuser

prop

|                   |                 |         | Dead   | Floor Live |              |
|-------------------|-----------------|---------|--------|------------|--------------|
| Vertical Load     | Location (Side) | Spacing | (0.90) | (1.00)     | Comments     |
| 1 - Uniform (PSF) | 0 to 20' 8 1/2" | 16"     | 25.0   | 60.0       | Default Load |

ForteWEB Software Operator Job Notes Asrade Menastu Fossatti Pawlak Structural Engineers (206) 456-3071 amengstu@fossatti.com

### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Asrade Mengstu Fossatti Pawlak Structural Engineers (206) 456-3071 amengstu@fossatti.com Job Notes



11/4/2020 12:02:32 AM UTC ForteWEB v3.0, Engine: V8.1.4.2, Data: V8.0.0.0 File Name: 20-129 9820 SE 35th Place Remodel Page 2 / 2



### 1st Floor, Floor: Joist FJ3 1 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL @ 16" OC



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|----------------------------|-------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs)      | 511 @ 3 1/2"      | 1969 (1.50") | Passed (26%)   |      | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)                | 447 @ 10 3/4"     | 2411         | Passed (19%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-Ibs)            | 1225 @ 5' 1"      | 3700         | Passed (33%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)       | 0.125 @ 5' 1"     | 0.319        | Passed (L/922) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in)      | 0.166 @ 5' 1"     | 0.479        | Passed (L/691) |      | 1.0 D + 1.0 L (All Spans)   |
| TJ-Pro <sup>™</sup> Rating | 52                | 40           | Passed         |      |                             |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

· A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro<sup>™</sup> Rating include: None.

|                              | Bearing Length |                     |          | Loads t | o Supports |       |             |
|------------------------------|----------------|---------------------|----------|---------|------------|-------|-------------|
| Supports                     | Total          | Available           | Required | Dead    | Floor Live | Total | Accessories |
| 1 - Hanger on 7 1/4" HF beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 136     | 407        | 543   | See note 1  |
| 2 - Stud wall - HF           | 5.50"          | 5.50"               | 1.50"    | 138     | 413        | 551   | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                           | Bracing Intervals | Comments |  |  |
|-----------------------------------------------------------|-------------------|----------|--|--|
| Top Edge (Lu)                                             | 10' o/c           |          |  |  |
| Bottom Edge (Lu)                                          | 10' o/c           |          |  |  |
| Maximum allowable bracing intervals based on applied load |                   |          |  |  |

ium allowable bracing intervals based on applied load.

| Connector: Simpson Strong-T | ie       |             |               |                |                  |             |
|-----------------------------|----------|-------------|---------------|----------------|------------------|-------------|
| Support                     | Model    | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 1 - Face Mount Hanger       | HU1.81/5 | 2.50"       | N/A           | 12-10dx1.5     | 4-10dx1.5        |             |

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                   |                 |         | Dead   | Floor Live |              |
|-------------------|-----------------|---------|--------|------------|--------------|
| Vertical Load     | Location (Side) | Spacing | (0.90) | (1.00)     | Comments     |
| 1 - Uniform (PSF) | 0 to 10' 3"     | 16"     | 20.0   | 60.0       | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                                        | Job Notes | ]            |
|---------------------------------------------------------------------------------------------------|-----------|--------------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com | G2        | Weyerhaeuser |

10/27/2020 1:03:11 AM UTC ForteWEB v3.0, Engine: V8.1.4.2, Data: V8.0.0.0 File Name: 20-129 9820 SE 35th Place Remodel Page 1 / 1

| F | В | 1 |
|---|---|---|
|   |   |   |

10/16/20 17:16:49

| STEEL                              | CODE: AISC                                                                       | 360-05 ASD                                                                       |                                         |                                      |                  |              |              |                  |
|------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|------------------|--------------|--------------|------------------|
| SPAN I<br>Bea<br>Tota<br>Mp<br>Top | NFORMATIC<br>m Size (User S<br>al Beam Length<br>(kip-ft) =<br>o flange not brad | <b>DN (ft): I-End (0</b> .<br>elected) =<br>n (ft) =<br>28.89<br>ced by decking. | . <b>00,0.00)</b> J<br>C8X11.5<br>15.00 | -End (1                              | 5.00,0.00)       | Fy =         | 36.0 ksi     |                  |
| LINE L<br>Load                     | OADS (k/ft):<br>Dist (ft)                                                        | DL LL                                                                            |                                         |                                      |                  |              |              |                  |
| 1                                  | 0.000                                                                            | 0.011 0.000                                                                      |                                         |                                      |                  |              |              |                  |
| 2                                  | 0.000 15.000                                                                     | 0.0110.0000.0800.1200.0800.120                                                   |                                         |                                      |                  |              |              |                  |
| SHEAR                              | : Max Va (Dl                                                                     | L+LL) = 1.59 kips                                                                | Vn/1.67 =                               | <b>22.76 k</b> i                     | ips              |              |              |                  |
| моме                               | NTS:                                                                             |                                                                                  |                                         |                                      |                  |              |              |                  |
| Span                               | Cond                                                                             | LoadCombo                                                                        | Ma<br>kip-ft                            | (                                    | i) Lb<br>ft ft   | Cb           | Ω            | Mn / Ω<br>kip-ft |
| Center<br>Controll                 | Max +<br>ing                                                                     | DL+LL<br>DL+LL                                                                   | 5.9<br>5.9                              | 7.<br>7.                             | 5 15.0<br>5 15.0 | 1.14<br>1.14 | 1.67<br>1.67 | 7.71<br>7.71     |
| REACT                              | TIONS (kips):                                                                    |                                                                                  |                                         |                                      |                  |              |              |                  |
| DL<br>Max<br>Max                   | reaction<br>x +LL reaction<br>x +total reaction                                  | n                                                                                | Left<br>0.69<br>0.90<br>1.59            | <b>Right</b><br>0.69<br>0.90<br>1.59 |                  |              |              |                  |
| DEFLE                              | <b>CTIONS:</b>                                                                   |                                                                                  |                                         |                                      |                  |              |              |                  |
| Dea                                | d load (in)                                                                      | at                                                                               | 7.50 ft                                 | =                                    | -0.111           | L/D =        | 1628         |                  |
| Live<br>Net                        | e load (1n)<br>Total load (in)                                                   | at<br>at                                                                         | 7.50 ft<br>7.50 ft                      | =                                    | -0.145<br>-0.256 | L/D = L/D =  | 1241<br>704  |                  |

RAM SBeam v5.0



| CODES &<br>STANDARDS | ENVI<br>RE                    | ENVIRONMENTAL<br>REGULATION |               | SUSTAINABILITY |               | TION | PUBLIC<br>POLICY |  |
|----------------------|-------------------------------|-----------------------------|---------------|----------------|---------------|------|------------------|--|
| Members:             | Login Register                |                             |               | Membership     | News          | FAQs | About            |  |
|                      |                               |                             |               | Search         |               |      |                  |  |
| Exterior stair top   | Main Member: Angle o          | of Load to Grain            | 90            |                |               |      |                  |  |
| stringer connection  | Sid                           | le Member Type              | Steel         |                |               | ~    |                  |  |
|                      | Side Me                       | mber Thickness              | 1/4 in.       |                |               | ~    |                  |  |
|                      | Side Member: Angle o          | of Load to Grain            | 0             |                |               |      |                  |  |
|                      | Fa                            | stener Diameter             | 1 in.         |                |               | ~    |                  |  |
|                      | Load                          | Duration Factor             | C_D = 1.0     |                |               | ~    |                  |  |
|                      | We                            | et Service Factor           | $C_M = 1.0$   |                |               | ~    |                  |  |
|                      | Tem                           | perature Factor             | C_t = 1.0     |                | ~             |      |                  |  |
|                      | Calculate Connection Capacity |                             |               |                |               |      |                  |  |
|                      | Conne                         | ection Yield Mode D         | Descriptions  |                | Limits of     | Use  |                  |  |
|                      | Diaphragm Factor H            | lelp Load Du                | uration Facto | or Help To     | echnical Help |      |                  |  |
|                      |                               | Shov                        | w Printable \ | /iew           |               |      |                  |  |
|                      |                               |                             |               |                |               |      |                  |  |

## **Connection Yield Modes**

| Im   | 1575 lbs. |
|------|-----------|
| Is   | 4350 lbs. |
| II   | 802 lbs.  |
| IIIm | 1475 lbs. |
| IIIs | 1501 lbs. |
| IV   | 2028 lbs. |

| Adjusted ASD Capacity | 802 lbs. |
|-----------------------|----------|

- Bolt bending yield strength of 45,000 psi is assumed.
- The Adjusted ASD Capacity is only applicable for bolts with adequate end distance, edge distance and spacing per N
- ASTM A36 Steel is assumed for steel side members 1/4 in. thick, and ASTM A653 Grade 33 Steel is assumed for ste than 1/4 in. thick.

While every effort has been made to insure the accuracy of the information presented, and special effort has been made to ass information reflects the state-of-the-art, neither the American Wood Council nor its members assume any responsibility for a prepared from this on-line Connection Calculator. Those using this on-line Connection Calculator assume all liability from it

The Connection Calculator was designed and created by Cameron Knudson, Michael Dodson and David Pollock at Washing Support for development of the Connection Calculator was provided by <u>American Wood Council</u>.

### FB2

### 10/27/20 10:12:44

Fy = 36.0 ksi

RAM SBeam v5.0

## SPAN INFORMATION (ft): I-End (0.00,0.00) J-End (9.50,0.00)

Beam Size (User Selected) = C15X33.9Total Beam Length (ft) = 9.50Mp (kip-ft) = 152.40Top flange not braced by decking.

### **POINT LOADS (kips):**

|           |      |      | Flange | Bracing |
|-----------|------|------|--------|---------|
| Dist (ft) | DL   | LL   | Тор    | Bottom  |
| 3.500     | 0.70 | 0.90 | No     | No      |
| 6.000     | 0.70 | 0.90 | No     | No      |

### LINE LOADS (k/ft):

| Load | Dist (ft) | DL    | LL    |
|------|-----------|-------|-------|
| 1    | 0.000     | 0.034 | 0.000 |
|      | 9.500     | 0.034 | 0.000 |
| 2    | 0.000     | 0.025 | 0.060 |
|      | 9.500     | 0.025 | 0.060 |

### SHEAR: Max Va (DL+LL) = 2.17 kips Vn/1.67 = 77.60 kips

### **MOMENTS:**

| Span        | Cond         | LoadCombo | Ma      | ι (   | a     | Lb  | Cb    | Ω     | $Mn / \Omega$ |
|-------------|--------------|-----------|---------|-------|-------|-----|-------|-------|---------------|
|             |              |           | kip-ft  | Ţ     | ft    | ft  |       |       | kip-ft        |
| Center      | Max +        | DL+LL     | 6.9     | 9 4   | .8    | 9.5 | 1.17  | 1.67  | 82.92         |
| Controlling |              | DL+LL     | 6.9     | ) 4   | .8    | 9.5 | 1.17  | 1.67  | 82.92         |
| REACTION    | IS (kips):   |           |         |       |       |     |       |       |               |
|             | · • ·        |           | Left    | Right |       |     |       |       |               |
| DL react    | tion         |           | 0.98    | 0.98  |       |     |       |       |               |
| Max +Ll     | L reaction   |           | 1.18    | 1.18  |       |     |       |       |               |
| Max +to     | tal reaction |           | 2.17    | 2.17  |       |     |       |       |               |
| DEFLECTI    | ONS:         |           |         |       |       |     |       |       |               |
| Dead loa    | ıd (in)      | at        | 4.75 ft | t =   | -0.00 | 5   | L/D = | 20855 |               |
| Live load   | d (in)       | at        | 4.75 ft | t =   | -0.00 | 7   | L/D = | 16992 |               |
| Net Tota    | l load (in)  | at        | 4.75 ft | t =   | -0.01 | 2   | L/D = | 9363  |               |





1st Floor, Floor Beam FB3

1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam

17'



HANGERS WELDED

TO WF COLUMNS,

2

An excessive uplift of -1289 lbs at support located at 17' 5 1/2" failed this product.

1

0



System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location   | Allowed      | Result         | LDF  | Load: Combination (Pattern)                      |
|-----------------------|---------------------|--------------|----------------|------|--------------------------------------------------|
| Member Reaction (lbs) | 1789 @ 17' 5 1/2"   | 3413 (1.50") | Passed (52%)   |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Shear (lbs)           | 1740 @ 16' 5 1/2"   | 11872        | Passed (15%)   | 1.60 | 1.0 D + 0.7 E (All Spans)                        |
| Pos Moment (Ft-lbs)   | 10730 @ 11'         | 26880        | Passed (40%)   | 1.60 | 1.0 D + 0.7 E (All Spans)                        |
| Neg Moment (Ft-Ibs)   | -8812 @ 11'         | 20720        | Passed (43%)   | 1.60 | 0.6 D - 0.7 E (All Spans)                        |
| Live Load Defl. (in)  | -0.430 @ 9' 6 3/16" | 0.567        | Passed (L/475) |      | 0.6 D - 0.7 E (All Spans)                        |
| Total Load Defl. (in) | 0.502 @ 9' 5 5/16"  | 0.850        | Passed (L/406) |      | 1.0 D + 0.7 E (All Spans)                        |

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L =  $17^{\circ}$ .

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 17'.

• -718 lbs uplift at support located at 5 1/2". Strapping or other restraint may be required.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

|                           | Bearing Length |           |          | Loads to Supports (lbs) |            |            |                |             |
|---------------------------|----------------|-----------|----------|-------------------------|------------|------------|----------------|-------------|
| Supports                  | Total          | Available | Required | Dead                    | Floor Live | Seismic    | Total          | Accessories |
| 1 - Hanger on 12" DF beam | 5.50"          | Hanger1   | 1.50"    | 311                     | 538        | 1292/-1292 | 2141/-<br>1292 | See note 1  |
| 2 - Hanger on 12" DF beam | 5.50"          | Hanger1   | 1.50"    | 311                     | 538        | 2108/-2108 | 2957/-<br>2108 | See note 1  |

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 17' o/c           |          |
| Bottom Edge (Lu) | 17' o/c           |          |
|                  |                   | -        |

•Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |             |             |               |                |                  |             |  |  |
|-------------------------------|-------------|-------------|---------------|----------------|------------------|-------------|--|--|
| Support                       | Model       | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |  |
| 1 - Face Mount Hanger         | HUCQ410-SDS | 3.00"       | N/A           | 12-SDS25212    | 6-SDS25212       |             |  |  |
| 2 - Face Mount Hanger         | HUCQ410-SDS | 3.00"       | N/A           | 12-SDS25212    | 6-SDS25212       |             |  |  |

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                      |                 | Dead   | Floor Live | Seismic |              |
|-----------------------|----------------------|-----------------|--------|------------|---------|--------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.00)     | (1.60)  | Comments     |
| 0 - Self Weight (PLF) | 5 1/2" to 17' 5 1/2" | N/A             | 10.2   |            |         |              |
| 1 - Uniform (PSF)     | 0 to 17' 11" (Front) | 1'              | 25.0   | 60.0       | -       | Default Load |
| 2 - Point (Ib)        | 11' (Front)          | N/A             | -      | -          | 3400    |              |

| ForteWEB Software Operator                                                                        | Job Notes |                   |
|---------------------------------------------------------------------------------------------------|-----------|-------------------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com | G3        | 1<br>Weyerhaeuser |

### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Asrade Mengstu Fossatti Pawlak Structural Engineers (206) 456-3071 amengstu@fossatti.com Job Notes



11/4/2020 12:09:32 AM UTC ForteWEB v3.0, Engine: V8.1.4.2, Data: V8.0.0.0 File Name: 20-129 9820 SE 35th Place Remodel Page 2 / 2



#### 1st Floor, Floor Beam FB4

1 piece(s) 6 3/4" x 7 1/2" 24F-V8 DF Glulam



An excessive uplift of -1077 lbs at support located at 4" failed this product.

An excessive uplift of -3418 lbs at support located at 12' 2 1/4" failed this product.



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed       | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|---------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 4029 @ 12' 2 1/4" | 24131 (5.50") | Passed (17%)    |      | 1.0 D + 0.7 E (All Spans)   |
| Shear (lbs)           | 1649 @ 13' 1/2"   | 14310         | Passed (12%)    | 1.60 | 1.0 D + 0.7 E (All Spans)   |
| Pos Moment (Ft-Ibs)   | 7786 @ 6'         | 20250         | Passed (38%)    | 1.60 | 1.0 D + 0.7 E (Alt Spans)   |
| Neg Moment (Ft-lbs)   | -6592 @ 6'        | 20250         | Passed (33%)    | 1.60 | 0.6 D - 0.7 E (Alt Spans)   |
| Live Load Defl. (in)  | 0.185 @ 14' 5"    | 0.200         | Passed (2L/288) |      | 0.6 D - 0.7 E (Alt Spans)   |
| Total Load Defl. (in) | 0.171 @ 14' 5"    | 0.223         | Passed (2L/312) |      | 0.6 D - 0.7 E (Alt Spans)   |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/0.2") and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 11' 9 5/16".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 14' 1".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

Applicable calculations are based on NDS.

|                 | Bearing Length |           |          | Loads to Supports (lbs) |            |            |                |             |
|-----------------|----------------|-----------|----------|-------------------------|------------|------------|----------------|-------------|
| Supports        | Total          | Available | Required | Dead                    | Floor Live | Seismic    | Total          | Accessories |
| 1 - Column - DF | 5.50"          | 5.50"     | 1.50"    | 276                     | 501/-17    | 1775/-1775 | 2552/-<br>1792 | None        |
| 2 - Column - DF | 5.50"          | 5.50"     | 1.50"    | 382                     | 669        | 5211/-5211 | 6262/-<br>5211 | Blocking    |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 14' 5" o/c        |          |
| Bottom Edge (Lu) | 14' 5" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                     |                 | Dead   | Floor Live | Seismic |              |
|-----------------------|---------------------|-----------------|--------|------------|---------|--------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.60)  | Comments     |
| 0 - Self Weight (PLF) | 0 to 14' 5"         | N/A             | 12.3   |            |         |              |
| 1 - Uniform (PSF)     | 0 to 14' 5" (Front) | 1' 4"           | 25.0   | 60.0       | -       | Default Load |
| 2 - Point (lb)        | 6' (Front)          | N/A             | -      | -          | 3400    |              |
| 3 - Point (lb)        | 12' 10" (Front)     | N/A             | -      | -          | 3400    |              |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                                        | Job Notes |
|---------------------------------------------------------------------------------------------------|-----------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com |           |





### 1st Floor, Floor Beam FB4 W/OMEGA

1 piece(s) 6 3/4" x 7 1/2" 24F-V8 DF Glulam



**OVERSTRENGTH** 

FACTOR APPLIED,

OK

An excessive uplift of -2940 lbs at support located at 4" failed this product.

An excessive uplift of -8889 lbs at support located at 12' 2 1/4" failed this product.



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed       | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|---------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 9500 @ 12' 2 1/4" | 24131 (5.50") | Passed (39%)    |      | 1.0 D + 0.7 E (All Spans)   |
| Shear (lbs)           | 4029 @ 13' 1/2"   | 14310         | Passed (28%)    | 1.60 | 1.0 D + 0.7 E (All Spans)   |
| Pos Moment (Ft-Ibs)   | 18345 @ 6'        | 20250         | Passed (91%)    | 1.60 | 1.0 D + 0.7 E (Alt Spans)   |
| Neg Moment (Ft-Ibs)   | -17152 @ 6'       | 20250         | Passed (85%)    | 1.60 | 0.6 D - 0.7 E (Alt Spans)   |
| Live Load Defl. (in)  | 0.463 @ 14' 5"    | 0.200         | Failed (2L/116) |      | 0.6 D - 0.7 E (Alt Spans)   |
| Total Load Defl. (in) | 0.449 @ 14' 5"    | 0.223         | Failed (2L/120) |      | 0.6 D - 0.7 E (Alt Spans)   |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/0.2") and TL (2L/240). Upward deflection on right cantilever exceeds overhang deflection criteria.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 11' 9 13/16".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 14' 1".

· Upward deflection on right cantilever exceeds 0.4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• Applicable calculations are based on NDS.

|                                                                  | Bearing Length   |               |               | Ŀ              | oads to Sup   |                  |                  |             |
|------------------------------------------------------------------|------------------|---------------|---------------|----------------|---------------|------------------|------------------|-------------|
| Supports                                                         | Total            | Available     | Required      | Dead           | Floor Live    | Seismic          | Total            | Accessories |
| 1 - Column - DF                                                  | 5.50"            | 5.50"         | 1.50"         | 276            | 501/-17       | 4437/-4437       | 5214/-<br>4454   | None        |
| 2 - Column - DF                                                  | 5.50"            | 5.50"         | 2.17"         | 382            | 669           | 13026/-<br>13026 | 14077/-<br>13026 | Blocking    |
| <ul> <li>Blocking Panels are assumed to carry no load</li> </ul> | s applied direct | tly above the | m and the ful | load is applie | ed to the mem | her being des    | signed.          | •           |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 14' 5" o/c        |          |
| Bottom Edge (Lu) | 14' 5" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                     |                 | Dead   | Floor Live | Seismic |              |
|-----------------------|---------------------|-----------------|--------|------------|---------|--------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.60)  | Comments     |
| 0 - Self Weight (PLF) | 0 to 14' 5"         | N/A             | 12.3   |            |         |              |
| 1 - Uniform (PSF)     | 0 to 14' 5" (Front) | 1' 4"           | 25.0   | 60.0       | -       | Default Load |
| 2 - Point (lb)        | 6' (Front)          | N/A             | -      | -          | 8500    |              |
| 3 - Point (Ib)        | 12' 10" (Front)     | N/A             | -      | -          | 8500    |              |

ForteWEB Software Operator Asrade Mengstu Fossatti Pawlak Structural Engineers (206) 456-3071 amengstu@fossatti.com



### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Asrade Mengstu Fossatti Pawlak Structural Engineers (206) 456-3071 amengstu@fossatti.com Job Notes



11/4/2020 12:22:56 AM UTC ForteWEB v3.0, Engine: V8.1.4.2, Data: V8.0.0.0 File Name: 20-129 9820 SE 35th Place Remodel Page 2 / 2







All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern)         |
|-----------------------|-------------------|--------------|----------------|------|-------------------------------------|
| Member Reaction (lbs) | 4747 @ 2"         | 7809 (3.50") | Passed (61%)   |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Shear (lbs)           | 3797 @ 1' 1"      | 9643         | Passed (39%)   | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Moment (Ft-Ibs)       | 14135 @ 6' 6 1/2" | 19585        | Passed (72%)   | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Live Load Defl. (in)  | 0.428 @ 6' 6 1/2" | 0.425        | Passed (L/357) |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Total Load Defl. (in) | 0.609 @ 6' 6 1/2" | 0.637        | Passed (L/251) |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

· Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

|                                                                  | Bearing Length |                |               | Loads to Supports (lbs) |               |              |        |             |
|------------------------------------------------------------------|----------------|----------------|---------------|-------------------------|---------------|--------------|--------|-------------|
| Supports                                                         | Total          | Available      | Required      | Dead                    | Floor Live    | Snow         | Total  | Accessories |
| 1 - Stud wall - SPF                                              | 3.50"          | 3.50"          | 2.13"         | 1410                    | 3140          | 1308         | 5858   | Blocking    |
| 2 - Stud wall - SPF                                              | 3.50"          | 3.50"          | 2.13"         | 1410                    | 3140          | 1308         | 5858   | Blocking    |
| <ul> <li>Blocking Panels are assumed to carry no load</li> </ul> | s annlied dire | ctly above the | m and the ful | l load is annli         | ed to the men | her heina de | signed |             |

above them and the full load is

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 13' 1" o/c        |          |
| Bottom Edge (Lu) | 13' 1" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                     |                 | Dead   | Floor Live | Snow   |              |
|-----------------------|---------------------|-----------------|--------|------------|--------|--------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 13' 1"         | N/A             | 15.6   |            |        |              |
| 1 - Uniform (PSF)     | 0 to 13' 1" (Front) | 8'              | 25.0   | 60.0       | 25.0   | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                                        |
|---------------------------------------------------------------------------------------------------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com |







### 1st Floor, Header Beam HB2 1 piece(s) 5 1/2" x 10 1/2" 24F-V8 DF Glulam





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern)         |
|-----------------------|-------------------|--------------|----------------|------|-------------------------------------|
| Member Reaction (lbs) | 5114 @ 2"         | 7796 (3.50") | Passed (66%)   |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Shear (lbs)           | 3993 @ 1' 2"      | 10203        | Passed (39%)   | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Pos Moment (Ft-Ibs)   | 14613 @ 6' 3 1/2" | 20213        | Passed (72%)   | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Live Load Defl. (in)  | 0.304 @ 6' 3 1/2" | 0.408        | Passed (L/483) |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Total Load Defl. (in) | 0.431 @ 6' 3 1/2" | 0.613        | Passed (L/341) |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 12' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

Applicable calculations are based on NDS.

|                                                                  | Bearing Length |                | L             | oads to Sup   |              |              |        |             |
|------------------------------------------------------------------|----------------|----------------|---------------|---------------|--------------|--------------|--------|-------------|
| Supports                                                         | Total          | Available      | Required      | Dead          | Floor Live   | Snow         | Total  | Accessories |
| 1 - Stud wall - HF                                               | 3.50"          | 3.50"          | 2.30"         | 1504          | 3398         | 1416         | 6318   | Blocking    |
| 2 - Stud wall - HF                                               | 3.50"          | 3.50"          | 2.30"         | 1504          | 3398         | 1416         | 6318   | Blocking    |
| <ul> <li>Blocking Panels are assumed to carry no load</li> </ul> | s annlied dire | ctly above the | m and the ful | load is appli | d to the men | ber being de | rianed |             |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 12' 7" o/c        |          |
| Bottom Edge (Lu) | 12' 7" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                     |                 | Dead   | Floor Live | Snow   |              |
|-----------------------|---------------------|-----------------|--------|------------|--------|--------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 12' 7"         | N/A             | 14.0   |            |        |              |
| 1 - Uniform (PSF)     | 0 to 12' 7" (Front) | 9'              | 25.0   | 60.0       | 25.0   | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                                        |
|---------------------------------------------------------------------------------------------------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com |
|                                                                                                   |





#### 1st Floor, Header Beam HB3 1 piece(s) 4 x 8 Hem-Fir No. 2





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern)         |
|-----------------------|-------------------|--------------|-----------------|------|-------------------------------------|
| Member Reaction (lbs) | 1133 @ 2"         | 4961 (3.50") | Passed (23%)    |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Shear (lbs)           | 737 @ 10 3/4"     | 2538         | Passed (29%)    | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Moment (Ft-Ibs)       | 1340 @ 2' 9 1/2"  | 2823         | Passed (47%)    | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Live Load Defl. (in)  | 0.034 @ 2' 9 1/2" | 0.175        | Passed (L/999+) |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Total Load Defl. (in) | 0.048 @ 2' 9 1/2" | 0.262        | Passed (L/999+) |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                                                                                                                                      | Bearing Length |           | L        | oads to Sup |            |      |       |             |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------|-------------|------------|------|-------|-------------|
| Supports                                                                                                                             | Total          | Available | Required | Dead        | Floor Live | Snow | Total | Accessories |
| 1 - Stud wall - HF                                                                                                                   | 3.50"          | 3.50"     | 1.50"    | 332         | 754        | 314  | 1400  | Blocking    |
| 2 - Stud wall - HF                                                                                                                   | 3.50"          | 3.50"     | 1.50"    | 332         | 754        | 314  | 1400  | Blocking    |
| Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. |                |           |          |             |            |      |       |             |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 5' 7" o/c         |          |
| Bottom Edge (Lu) | 5' 7" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                    |                 | Dead   | Floor Live | Snow   |              |
|-----------------------|--------------------|-----------------|--------|------------|--------|--------------|
| Vertical Loads        | Location (Side)    | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 5' 7"         | N/A             | 6.4    |            |        |              |
| 1 - Uniform (PSF)     | 0 to 5' 7" (Front) | 4' 6"           | 25.0   | 60.0       | 25.0   | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                               |
|--------------------------------------------------------------------------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071 |
| amengstu@fossatti.com                                                    |





#### 1st Floor, Header Beam HB4 1 piece(s) 4 x 10 Hem-Fir No. 2





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern)         |
|-----------------------|-------------------|--------------|----------------|------|-------------------------------------|
| Member Reaction (lbs) | 3195 @ 2"         | 4961 (3.50") | Passed (64%)   |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Shear (lbs)           | 1958 @ 1' 3/4"    | 3238         | Passed (60%)   | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Moment (Ft-lbs)       | 4288 @ 3' 3 1/2"  | 4242         | Passed (101%)  | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Live Load Defl. (in)  | 0.088 @ 3' 3 1/2" | 0.208        | Passed (L/849) |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Total Load Defl. (in) | 0.111 @ 3' 3 1/2" | 0.313        | Passed (L/675) |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                                                                  | Bearing Length |                | Loads to Supports (Ibs)                                                                                                             |      |            |      |       |             |
|------------------------------------------------------------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|------|------------|------|-------|-------------|
| Supports                                                         | Total          | Available      | Required                                                                                                                            | Dead | Floor Live | Snow | Total | Accessories |
| 1 - Stud wall - HF                                               | 3.50"          | 3.50"          | 2.25"                                                                                                                               | 652  | 2238       | 1152 | 4042  | Blocking    |
| 2 - Stud wall - HF                                               | 3.50"          | 3.50"          | 2.25"                                                                                                                               | 652  | 2238       | 1152 | 4042  | Blocking    |
| <ul> <li>Blocking Panels are assumed to carry no load</li> </ul> | s applied dire | ctly above the | Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed |      |            |      |       |             |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 6' 7" o/c         |          |
| Bottom Edge (Lu) | 6' 7" o/c         |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                    |                 | Dead   | Floor Live | Snow   |              |
|-----------------------|--------------------|-----------------|--------|------------|--------|--------------|
| Vertical Loads        | Location (Side)    | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 6' 7"         | N/A             | 8.2    |            |        |              |
| 1 - Uniform (PSF)     | 0 to 6' 7" (Front) | 6'              | 25.0   | 60.0       | 25.0   | Default Load |
| 2 - Uniform (PSF)     | 0 to 6' 7" (Front) | 8'              | 5.0    | 40.0       | 25.0   | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                                                        |
|---------------------------------------------------------------------------------------------------|
| Asrade Mengstu<br>Fossatti Pawlak Structural Engineers<br>(206) 456-3071<br>amengstu@fossatti.com |
|                                                                                                   |



## **RETAINING WALL DESIGN PROGRAM**

Project: 9820 SE 35th PL Architect: Medici

Description: 6' Foundation Wall w/ EQ 8H

| <b>Design Parame</b>                                                                | ters:      |                                                  |                                      |              |                                        |                                       |                   |
|-------------------------------------------------------------------------------------|------------|--------------------------------------------------|--------------------------------------|--------------|----------------------------------------|---------------------------------------|-------------------|
| Surcharge on wa                                                                     | all =      | 48                                               | psf                                  |              | Retaining v                            | vall dimensions                       | :                 |
| Soil fluid density                                                                  | =          | 35                                               | pcf -                                | h            | Height (bof                            | to top) =                             | 5.5 ft            |
| Friction coefficie                                                                  | nt =       | 0.35                                             |                                      |              | Soil depth o                           | ver pad at toe =                      | 0.5 ft            |
| Soil unit weight =                                                                  | =          | 120                                              | pcf                                  |              | Stem thickn                            | ess =                                 | 0.67 ft           |
| Concrete unit we                                                                    | eight =    | 150                                              | pcf                                  |              | Toe projecti                           | on =                                  | 2                 |
| Passive resistan                                                                    | ce =       | 250                                              | pcf                                  |              | Footing wid                            | th =                                  | <mark>3</mark> ft |
| Allowable bearin                                                                    | ig =       | 1,500                                            | psf                                  |              | Pad thickne                            | ss =                                  | 1 ft              |
| Dead load on wa                                                                     | all =      | 188                                              | plf                                  | toe          | Key depth =                            | :                                     | <mark>0</mark> ft |
| Live load on wall                                                                   | =          | 313                                              | plf                                  |              |                                        |                                       |                   |
| Concrete Streng                                                                     | th =       | 2.5                                              | ksi                                  |              |                                        |                                       |                   |
| Summary:                                                                            | Safet      | y Factors:                                       | Slidi                                | ng Overturn  | P toe (psf)                            | P heel (psf)                          |                   |
| -                                                                                   | D          | ead Only:                                        | 0.9                                  | 1.6          | 1,170                                  | -                                     |                   |
|                                                                                     | De         | ad + Live:                                       | 1.1                                  | 2.1          | 1,049                                  | 85                                    |                   |
| Element weight                                                                      | s and m    | oments:                                          |                                      |              | Moment                                 | ts <sup>.</sup> ft-lbs_(Rt han        | d rule)           |
| FIFMENT                                                                             |            | Wt plf                                           | c                                    | l ft         | @toe                                   | @ pad cl                              |                   |
| Stem                                                                                |            | 452                                              | 23                                   | 35           | 1 056                                  | 378                                   |                   |
| Pad                                                                                 |            | 450                                              | 2.0                                  | 5            | 675                                    | 0/0                                   |                   |
| Kev                                                                                 |            | -30                                              | 23                                   | 35           | 0/0                                    | 0                                     |                   |
| Soil heel                                                                           |            | 178 2                                            | 2.0                                  | 35           | 505                                    | 238                                   |                   |
| Soil toe                                                                            |            | 120                                              | 2.0                                  | 1            | 120                                    | -60                                   |                   |
| Dead load                                                                           |            | 188                                              | 23                                   | 35           | 439                                    | 157                                   |                   |
| Live load                                                                           |            | 313                                              | 2.3                                  | 35           | 731                                    | 261                                   |                   |
| Sum: D                                                                              |            | 1 388                                            | 2.0                                  |              | 2 795                                  | 713                                   |                   |
| Sum: D+L                                                                            |            | 1,701                                            |                                      |              | 3.526                                  | 974                                   |                   |
| Vsoil = (1/2)(soil<br>Vresist:<br>P*Frict<br>Passive<br>Vres sum<br>Safety: (OK > 1 | fluid)(He  | ight)^2 + (H<br>Dead<br>486<br>250<br>736<br>0.9 | Height)<br>only<br>Ibs<br>Ibs<br>Ibs | (Surcharge   | ) =<br>Dea<br>596<br>250<br>846<br>1.1 | 793<br>ad + Live<br>Ibs<br>Ibs<br>Ibs | lbs               |
| Overturnina:                                                                        | ·          |                                                  |                                      |              |                                        |                                       |                   |
| Mot = (.167)(soil                                                                   | fluid)(He  | ight)^3 + (.                                     | 5)(sur                               | charge)(heig | ght)^2 =                               | -1,697                                | ft-lb             |
| Mresist:                                                                            |            | Dead                                             | only                                 |              | Dea                                    | ad + Live                             |                   |
| @ toe                                                                               |            | 2,795                                            | ft-lbs                               |              | 3,526                                  | ft-lbs                                |                   |
| Safety: (OK >                                                                       | 1.5)       | 1.6                                              |                                      |              | 2.1                                    |                                       |                   |
| Soil pressure: (                                                                    | P/A+M/S    | )                                                | 0 < 0                                | < < Pallow   |                                        |                                       |                   |
| • •                                                                                 |            | ,<br>Dead o                                      | only                                 |              | Dea                                    | ad + Live                             |                   |
| P = Weight on ft                                                                    | g =        | 1,388                                            | lbs                                  |              | 1,701                                  | lbs                                   |                   |
| M = Mot + Mreso                                                                     | cgftg =    | -984                                             | ft-lbs                               |              | -723                                   | ft-lbs                                |                   |
| e = M/P =                                                                           |            | -0.71                                            | feet                                 |              | -0.42                                  | feet                                  |                   |
| A = Footing area                                                                    | a =        | 2.37                                             | sf                                   |              | 3.00                                   | sf                                    |                   |
| S = ftg sect mod                                                                    | ulus =     | 0.94                                             | ft^3                                 |              | 1.50                                   | ft^3                                  |                   |
| P(toe) =                                                                            |            | 1,170                                            | psf                                  |              | 1,049                                  | psf                                   |                   |
| P(heel) =                                                                           |            | -                                                | psf                                  |              | 85                                     | psf                                   |                   |
| Reinforcing ste                                                                     | el:        |                                                  |                                      |              |                                        |                                       |                   |
| Element Mu                                                                          | ∣, in-k/ft | a, in                                            | As, in2                              | 2/ft         |                                        |                                       |                   |
| Wall:                                                                               | 20.8       | 0.14                                             | 0.06                                 | 5            |                                        |                                       |                   |
| Key:                                                                                | 0.0        | 0.00                                             | 0.00                                 | )            |                                        |                                       |                   |

$$\frac{5820}{LATERAL ANALYSIS} = NORTH-WEST ADDITION ON
LATERAL ANALYSIS
- REVISE LATERAL ANALYSIS E NORTH-WEST ADDITION ON
L LEVELS
- PROVIDE LATERAL ANALYSIS AT EAST ADDITION & BASETIENT
D FIRST PLOOR
NORTH-WEST ADDITION - CONSERVATIVELY apply half of building load on new
WIND: V=100mph, Exr. 'C', Kat=1.0
X WIND IN N-S DIRECTION:
UPPER FL= 7.80x 62951./2 = 24153 #
THIN FL = 8.5 x 25 × 15.8/2 = 15 KIT
TOTAL = 5,398 #
SEISTIC. SEISMIC LOAD:
ROOF 22-14 FLDL = [2087 × 12 + 52' × 5' × 8 × 1]/2]/1000 = 14.6 k
IIII FLOOR DL = (2307 × 13 + 52' × 5' × 8 × 1)/2]/1000 = 25.6 k
TOTAL = 402 k
From stalled clubters, V=0.129 W= 5.2 k
- SEISTIC GOVERNS
2-14 FL:
SHEARWARLS; N = 2600 # /2' = 371 /4 - USE SW-3
HOLDOWNS: 371×35 × 65'/21 = 1207 # - USE TISTE 40 STRAPS
IIII FL:
SW : 2 = 5200/16 = 325 Pg - SUE SW-3 - 127-0127 kg = 0.8 KT
32 × 0.5 H = 3413 # - SUE HDU T
FOSSATT PAWLAK
SHEARL ANALYSIS
- ATERAL ANALYSIS
- 20-129
- DORE TO ALL SUE SW-3 - 127-0127 kg = 0.8 KT
- 32 × 0.5 × 10.5 /3 × = 3413 # - SUE HDU T
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-129
- 20-1$$

CHEN

SHEET NO.

AM DESIGN

$$\frac{EAST}{ADDITION}$$

$$\frac{WIND:}{WIND:} V = 110 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. `C', K_{24} = 1.0$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, V = 0.12 M = 4.3$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, V = 0.12 M = 4.3$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, V = 0.12 M = 4.3$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, V = 0.12 M = 4.3$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, V = 0.12 M = 4.3$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, V = 0.12 M = 4.3$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, V = 0.12 M = 4.3$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, V = 0.12 M = 4.3$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, V = 0.12 M = 4.3$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, V = 0.12 M = 4.3$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, V = 0.12 M = 4.3$$

$$\frac{WIND:}{I^{A}} V = 100 myln, Exp. Constant, W = 0.000 myln, W = 0.0000 myln, W = 0.00000 m$$

1735 Westlake Ave N, #205 Seattle, WA 98109 (206) 456-3071 JOB TITLE 9820 SE 35th Place

| JOB NO.       | 20-129 | SHEET NO. |          |
|---------------|--------|-----------|----------|
| CALCULATED BY | AM     | DATE      | 10/15/20 |
| CHECKED BY    | FPP    | DATE      |          |

www.struware.com

### **Code Search**

**Code:** ASCE 7 - 10

### Occupancy:

Occupancy Group = R Residential

### **Risk Category & Importance Factors:**

| Risk Category =  | II   |                                                      |
|------------------|------|------------------------------------------------------|
| Wind factor =    | 1.00 | use 0.60 NOTE: Output will be nominal wind pressures |
| Snow factor =    | 1.00 |                                                      |
| Seismic factor = | 1.00 |                                                      |

### **Type of Construction:**

Fire Rating:

| Roof =  | 0.0 h |
|---------|-------|
| Floor = | 0.0 h |

### **Building Geometry:**

| Roof angle (θ)       | 12.00 / 12 | 45.0 deg |
|----------------------|------------|----------|
| Building length (L)  | 64.0 ft    |          |
| Least width (B)      | 51.0 ft    |          |
| Mean Roof Ht (h)     | 32.0 ft    |          |
| Parapet ht above grd | 0.0 ft     |          |
| Minimum parapet ht   | 0.0 ft     |          |
|                      |            |          |

### Live Loads:

| Roof | 0 to 200 sf:   | 12 psf                                     |
|------|----------------|--------------------------------------------|
|      | 200 to 600 sf: | 14.4 - 0.012Area, but not less than 12 psf |
|      | over 600 sf:   | 12 psf                                     |

### Floor:

| Typical Floor                   | 50 psf  |
|---------------------------------|---------|
| Partitions                      | 15 psf  |
| Corridors above first floor     | 80 psf  |
| Lobbies & first floor corridors | 100 psf |
| Balconies (1.5 times live load) | 75 psf  |

1735 Westlake Ave N, #205 Seattle, WA 98109 (206) 456-3071 JOB TITLE 9820 SE 35th Place

| <b>ЈОВ NO</b> . 20-129 | SHEET NO. |          |
|------------------------|-----------|----------|
| CALCULATED BY AM       | DATE      | 10/15/20 |
| CHECKED BY FPP         | DATE      |          |

#### Wind Loads : ASCE 7-10 Ultimate Wind Speed 110 mph Nominal Wind Speed 85.2 mph **Risk Category** Ш Exposure Category С Enclosure Classif. **Enclosed Building** Internal pressure +/-0.18 Directionality (Kd) 0.85 Kh case 1 0.996 Kh case 2 0.996 Type of roof Monoslope Monosloped roof must be <= 30 deg. Topographic Factor (Kzt) Topography Flat Hill Height (H) 336.0 ft Half Hill Length (Lh) 1200.0 ft Actual H/Lh 0.28 = Use H/Lh 0.28 = Modified Lh = 1200.0 ft From top of crest: x = 480.0 ft Bldg up/down wind? downwind K<sub>1</sub> = H/Lh= 0.28 0.000 x/Lh = 0.40K<sub>2</sub> = 0.733 z/Lh = 0.03 $K_{3} =$ 1.000 At Mean Roof Ht: $Kzt = (1+K_1K_2K_3)^2 =$ 1.00



| Gust Effect | <u>Factor</u> |
|-------------|---------------|
| h =         | 32.0 ft       |
| B =         | 51.0 ft       |
| /z (0.6h) = | 19.2 ft       |
|             |               |

| Flexible structure if natural frequency < 1 Hz (T > 1 second).              |                 |  |  |  |  |
|-----------------------------------------------------------------------------|-----------------|--|--|--|--|
| However, if building h/B < 4 then probably rigid structure (rule of thumb). |                 |  |  |  |  |
| h/B = 0.63                                                                  | Rigid structure |  |  |  |  |

### G = 0.85 Using rigid structure default

| Rigi                                     | id Structure      | Flexible or Dyn                | amically Se  | nsitive St | ructure |     |         |
|------------------------------------------|-------------------|--------------------------------|--------------|------------|---------|-----|---------|
| ē =                                      | 0.20              | Natural Frequency $(\eta_1) =$ | 0.0 Hz       |            |         |     |         |
| ℓ =<br>z <sub>min</sub> =                | 500 ft<br>15 ft   | Damping ratio (β) =<br>/b =    | 0<br>0.65    |            |         |     |         |
| c =<br>g <sub>Q</sub> , g <sub>v</sub> = | 0.20<br>3.4       | /α =<br>Vz =                   | 0.15<br>96.5 |            |         |     |         |
| L <sub>z</sub> =                         | 448.7 ft          | N <sub>1</sub> =               | 0.00         |            |         |     |         |
| Q =                                      | 0.91              | R <sub>n</sub> =               | 0.000        |            |         |     |         |
| $I_z =$                                  | 0.22              | R <sub>h</sub> =               | 28.282       | η =        | 0.000   | h = | 32.0 ft |
| G =                                      | 0.88 use G = 0.85 | R <sub>B</sub> =               | 28.282       | η =        | 0.000   |     |         |
|                                          |                   | R <sub>L</sub> =               | 28.282       | η =        | 0.000   |     |         |
|                                          |                   | g <sub>R</sub> =               | 0.000        |            |         |     |         |
|                                          |                   | R =                            | 0.000        |            |         |     |         |
|                                          |                   | G =                            | 0.000        |            |         |     |         |

1735 Westlake Ave N, #205 Seattle, WA 98109 (206) 456-3071

| SHEET NO. |                           |
|-----------|---------------------------|
| DATE      | 10/15/20                  |
| DATE      |                           |
|           | SHEET NO.<br>DATE<br>DATE |

### **Enclosure Classification**

Test for Enclosed Building: A building that does not qualify as open or partially enclosed.

Test for Open Building:

All walls are at least 80% open. Ao  $\geq$  0.8Ag

Test for Partially Enclosed Building:

|     | Input |    |
|-----|-------|----|
| Ao  | 0.0   | sf |
| Ag  | 0.0   | sf |
| Aoi | 0.0   | sf |
| Agi | 0.0   | sf |



Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:

Ao ≥ 1.1Aoi

Ao > smaller of 4' or 0.01 Ag Aoi / Agi  $\leq 0.20$ 

Where:

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

### Reduction Factor for large volume partially enclosed buildings (Ri) :

If the partially enclosed building contains a single room that is unpartitioned , the internal pressure coefficient may be multiplied by the reduction factor Ri.

| Total area of all wall & roof openings (Aog): |      | 0 sf |
|-----------------------------------------------|------|------|
| Unpartitioned internal volume (Vi) :          |      | 0 cf |
|                                               | Ri = | 1.00 |

### Altitude adjustment to constant 0.00256 (caution - see code) :

| Altitude = | 0 feet  | Average Air Density = | 0.0765 lbm/ft <sup>3</sup> |
|------------|---------|-----------------------|----------------------------|
| Constant = | 0.00256 |                       |                            |

1735 Westlake Ave N, #205 Seattle, WA 98109 (206) 456-3071 JOB TITLE 9820 SE 35th Place

| <b>ЈОВ NO</b> . 20-129 | SHEET NO. |          |
|------------------------|-----------|----------|
| CALCULATED BY AM       | DATE      | 10/15/20 |
| CHECKED BY FPP         | DATE      |          |

### Wind Loads - MWFRS all h (Enclosed/partially enclosed only)

| Kh (case 2) =                     | 1.00     | h =        | 32.0 ft | GCpi =  | +/-0.18 |
|-----------------------------------|----------|------------|---------|---------|---------|
| Base pressure (q <sub>h</sub> ) = | 15.7 psf | ridge ht = | 44.8 ft | G =     | 0.85    |
| Roof Angle (θ) =                  | 45.0 deg | L =        | 64.0 ft | qi = qh |         |
| Roof tributary area - (h/2)*L:    | 1024 sf  | B =        | 51.0 ft |         |         |
| (h/2)*B:                          | 816 sf   |            |         |         |         |

#### Nominal Wind Surface Pressures (psf)

|                          | Wind Normal to Ridge |            |                                    |                        | Wind      | Parallel to | Ridge       |                                     |                                     |
|--------------------------|----------------------|------------|------------------------------------|------------------------|-----------|-------------|-------------|-------------------------------------|-------------------------------------|
|                          | B/L =                | 0.80       | h/L =                              | 0.63                   |           | L/B =       | 1.25        | h/L =                               | 0.50                                |
| Surface                  | Ср                   | $q_h GC_p$ | w/+q <sub>i</sub> GC <sub>pi</sub> | w/-q <sub>h</sub> GCpi | Dist.*    | Ср          | $q_h GC_p$  | w/ +q <sub>i</sub> GC <sub>pi</sub> | w/ -q <sub>h</sub> GC <sub>pi</sub> |
| Windward Wall (WW)       | 0.80                 | 10.7       | see tab                            | le below               |           | 0.80        | 10.7        | see tab                             | e below                             |
| Leeward Wall (LW)        | -0.50                | -6.7       | -9.5                               | -3.9                   |           | -0.45       | -6.0        | -8.8                                | -3.2                                |
| Side Wall (SW)           | -0.70                | -9.4       | -12.2                              | -6.5                   |           | -0.70       | -9.4        | -12.2                               | -6.5                                |
| Leeward Roof (LR)        | -0.60                | -8.0       | -10.9                              | -5.2                   |           | Inc         | cluded in w | indward roof                        |                                     |
| Windward Roof neg press. | 0.00                 | 0.0        | -2.8                               | 2.8                    | 0 to h/2* | -0.90       | -12.0       | -14.9                               | -9.2                                |
| Windward Roof pos press. | 0.37                 | 5.0        | 2.2                                | 7.8                    | h/2 to h* | -0.90       | -12.0       | -14.9                               | -9.2                                |
|                          |                      |            |                                    |                        | h to 2h*  | -0.50       | -6.7        | -9.5                                | -3.9                                |

\*Horizontal distance from windward edge

NOTE: The code requires the MWFRS be designed for minimum ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.

|         | winuward |      |      |            |               |                   | Combined W |          |
|---------|----------|------|------|------------|---------------|-------------------|------------|----------|
|         |          |      |      | V          | Vindward Wa   | Normal            | Parallel   |          |
|         | Z        | Kz   | Kzt  | $q_z GC_p$ | w/+q_iGC_{pi} | w/- $q_h GC_{pi}$ | to Ridge   | to Ridge |
|         | 0 to 15' | 0.85 | 1.00 | 9.1        | 6.3           | 12.0              | 15.8       | 15.1     |
|         | 20.0 ft  | 0.90 | 1.00 | 9.7        | 6.9           | 12.5              | 16.4       | 15.7     |
|         | 25.0 ft  | 0.95 | 1.00 | 10.2       | 7.3           | 13.0              | 16.8       | 16.2     |
|         | 30.0 ft  | 0.98 | 1.00 | 10.6       | 7.7           | 13.4              | 17.2       | 16.6     |
| h=      | 32.0 ft  | 1.00 | 1.00 | 10.7       | 7.9           | 13.5              | 17.4       | 16.7     |
| ridge = | 44.8 ft  | 1.07 | 1.00 | 11.5       | 8.6           | 14.3              | 18.2       | 17.5     |



For monoslope roofs, entire roof surface is

either windward or leeward surface.





WIND PARALLEL TO RIDGE



NOTE: See figure in ASCE7 for the application of full and partial loading of the above wind pressures. There are 4 different loading cases.

| Parapet |            |         |          |       |
|---------|------------|---------|----------|-------|
| Z       | Kz         | Kzt     | qp (psf) |       |
| 0.0 ft  | 0.85       | 1.00    | 0.0      |       |
| Windwar | d parapet: | 0.0 psf | (GCpn =  | +1.5) |
| Leewar  | d parapet: | 0.0 psf | (GCpn =  | -1.0) |

Windward roof overhangs (add to windward roof pressure):

10.7 psf (upward)





## 9820 SE 35th PI, Mercer Island

## 9820 SE 35th PI, Mercer Island, WA 98040, USA

Latitude, Longitude: 47.5790361, -122.2051467

|                  | 96th Ave SE                   | 4th StBriarwood Ln                                                   |                      | 4        | East Channel                 |
|------------------|-------------------------------|----------------------------------------------------------------------|----------------------|----------|------------------------------|
|                  | Electron and a second         |                                                                      | ÖÖ                   | 9        | Mercer Island<br>Boat Launch |
| Goog             | gle                           | 90                                                                   |                      | $\gamma$ | Map data ©2020               |
| Date             | - aller sources of the second | nanasangan na kana kana kana kana kana kana k                        | 10/15/2020, 4:48     | 8:38 PM  |                              |
| Design Co        | ode Referer                   | nce Document                                                         | IBC-2015             |          |                              |
| Risk Cate        | gory                          |                                                                      | II                   |          |                              |
| Site Class       | 6                             |                                                                      | D - Stiff Soil       |          |                              |
| Туре             | Value                         | Description                                                          |                      |          |                              |
| SS               | 1.382                         | MCE <sub>R</sub> ground motion. (for 0.2 second period)              |                      |          |                              |
| S <sub>1</sub>   | 0.531                         | MCE <sub>R</sub> ground motion. (for 1.0s period)                    |                      |          |                              |
| S <sub>MS</sub>  | 1.382                         | Site-modified spectral acceleration value                            |                      |          |                              |
| S <sub>M1</sub>  | 0.796                         | Site-modified spectral acceleration value                            |                      |          |                              |
| S <sub>DS</sub>  | 0.921                         | Numeric seismic design value at 0.2 second SA                        |                      |          |                              |
| S <sub>D1</sub>  | 0.531                         | Numeric seismic design value at 1.0 second SA                        |                      |          |                              |
| Туре             | Value                         | Description                                                          |                      |          |                              |
| SDC              | D                             | Seismic design category                                              |                      |          |                              |
| Fa               | 1                             | Site amplification factor at 0.2 second                              |                      |          |                              |
| Fv               | 1.5                           | Site amplification factor at 1.0 second                              |                      |          |                              |
| PGA              | 0.568                         | MCE <sub>G</sub> peak ground acceleration                            |                      |          |                              |
| F <sub>PGA</sub> | 1                             | Site amplification factor at PGA                                     |                      |          |                              |
| PGA <sub>M</sub> | 0.568                         | Site modified peak ground acceleration                               |                      |          |                              |
| ΤL               | 6                             | Long-period transition period in seconds                             |                      |          |                              |
| SsRT             | 1.382                         | Probabilistic risk-targeted ground motion. (0.2 second)              |                      |          |                              |
| SsUH             | 1.438                         | Factored uniform-hazard (2% probability of exceedance in 50 years) s | pectral acceleration |          |                              |
| SsD              | 3.091                         | Factored deterministic acceleration value. (0.2 second)              |                      |          |                              |
| S1RT             | 0.531                         | Probabilistic risk-targeted ground motion. (1.0 second)              |                      |          |                              |
| S1UH             | 0.567                         | Factored uniform-hazard (2% probability of exceedance in 50 years) s | pectral acceleration |          |                              |
| S1D              | 1.289                         | Factored deterministic acceleration value. (1.0 second)              |                      |          |                              |
| PGAd             | 1.192                         | Factored deterministic acceleration value. (Peak Ground Acceleration | )                    |          |                              |
| C <sub>RS</sub>  | 0.961                         | Mapped value of the risk coefficient at short periods<br>L7          |                      |          |                              |

| Туре            | Value | Description                                             |
|-----------------|-------|---------------------------------------------------------|
| C <sub>R1</sub> | 0.935 | Mapped value of the risk coefficient at a period of 1 s |

### DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> <u>/OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

| $ \begin{array}{c} \text{cupancy Category 1} \\ \text{Lat. } & \frac{47.579}{122.005} \\ \text{Lat. } & \frac{47.579}{122.205} \\ \text{Ster Class } & \frac{47.579}{122.205} \\ \text{Ster Class } & \frac{47.579}{122.205} \\ \text{Ster Class } & \frac{53.1}{122.205} \\ $                                                                                                              | SEISMIC BASE SHEAR.          | ASCE 7-10              |                   |                |                   |          |              | _         | 98        | 20 SE 35th | n Place, Me   | rcer Island |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|-------------------|----------------|-------------------|----------|--------------|-----------|-----------|------------|---------------|-------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Occupancy Category           | 1                      | Oco               | cupancy Categ  | ory               |          | Fa           | Ss <      | Ss =      | Ss =       | Ss =          | Ss >        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Site Class =                 | D                      | &    (1)          | Ordinary Build | lings             |          |              | 0.25      | 0.5       | 0.75       | 1             | 1.25        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lat.                         | 47.579                 | III (2)           | High Occupar   | ncy Buildings     |          | A            | 0.8       | 0.8       | 0.8        | 0.8           | 0.8         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Long                         | 122.205                | IV (3)            | Hazardous/Es   | ssential Bldgs    |          | В            | 1         | 1         | 1          | 1             | 1           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ss =                         | 138.2 % g              |                   |                |                   |          | С            | 1.2       | 1.2       | 1.1        | 1             | 1           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S1 =                         | 53.1 % g               |                   |                |                   |          | D            | 1.6       | 1.4       | 1.2        | 1.1           | 1           |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Seismic Design               |                        |                   |                |                   |          |              | 2.5       | 1./       | 1.2        | 0.9           | 0.9         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calegory (SDC) =             | 1.00 4                 |                   | _              | anatala waada     | H        | -<br>Ev      | <b>a</b>  | <b>a</b>  | <b>a</b>   | <b>a</b>      | <b>a</b>    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fv =                         | 1.00                   |                   | Ea unner =     | 1                 | ŀ        |              | 01        | 02        | 03         | 04            | 05          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sds =                        | 0.921                  |                   | Fa lower =     | 1                 |          | Α            | 0.1       | 0.2       | 0.8        | 0.8           | 0.8         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sd1 =                        | 0.531                  |                   | Fv upper =     | 1.5               |          | В            | 1         | 1         | 1          | 1             | 1           |
| $\begin{array}{rcl} \mbox{min} = 0.044^* Sds & W & = & 0.04 \\ \hline Sms = Fars = 1.38 \\ \mbox{max} = \frac{Sdt^{-1}}{M} & W & = & 0.14 \\ \hline Sms = Fars = 1.78 \\ \mbox{min} = 0.7965 \\ \mbox{SDC Sds} = & 0.7965 \\ \mbox{Sds} = & 0.726 \\ \mbox{Sds} = & 0.726 \\ \mbox{Sds} = & 0.726 \\ \mbox{Sds} = & 0.221 \\ \mbox{Sds} = & 0.222 \\ \mbox{Sds} = & 0.531 \\ \mbox{Here} : \\ \mbox{Sds} = & 0.531 \\ \mbox{Here} : \\ \mbox{Sds} = & 0.631 \\ \mbox{Here} : \\ \mbox{Vservice} = & 0.199 \\ \mbox{W} & \mbox{W} = & \frac{1}{40.2} \\ \mbox{Kips} \\ \mbox{Fefore} : \\ \mbox{V.service} = & 0.099 \\ \mbox{W} & \mbox{W} = & \frac{1}{40.2} \\ \mbox{Kips} \\ \mbox{Special Cons SW} & \mbox{R} = & \frac{1}{6.5} \\ \mbox{Total W} = & \frac{1}{40.2} \\ \mbox{Kips} \\ \mbox{Special Cons SW} & \mbox{R} = & \frac{1}{6.5} \\ \mbox{Total W} = & \frac{1}{40.2} \\ \mbox{Kips} \\ \mbox{Special Cons SW} & \mbox{R} \\ \mbox{Special Cons SW} & \mbox{Special Cons SW} \\ \mbox{Special Cons SW} & Special$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                        |                   | Fv lower =     | 1.5               |          | С            | 1.7       | 1.6       | 1.5        | 1.4           | 1.3         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vmin = 0.044*Sds W           | = 0.04                 | S                 | Sms =Fa*Ss =   | 1.38              |          | D            | 2.4       | 2         | 1.8        | 1.6           | 1.5         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V = Sds* I W                 | = 0.14                 | Sr                | m1 = Fv*S1 =   | 0.7965            |          | E            | 3.5       | 3.2       | 2.8        | 2.4           | 2.4         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R                            |                        |                   | SDC Sds =      | D 4               | L        | F            | а         | а         | а          | а             | а           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vmax = <u>Sd1*I</u> W        | = 0.40                 |                   | SDC Sd1 =      | D 4               | 1 2      | T exponen    | n Ct      |           |            |               |             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R*T                          |                        |                   |                |                   | I        | 0.75         | 0.02      | default   |            |               | T           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                        | T expo'           | 0.75           |                   |          | 0.75         | 0.03      | Ecc Brace | ed Frames  |               |             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Where:                       | Sds = 0.921            | Ct =              | 0.02           |                   |          | 0.8          | 0.016     | Concrete  | Moment Fr  | ames          |             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | Sd1 = 0.531            | Hn =              | 22             |                   | L        | 0.9          | 0.028     | Steel Mor | nent Frame | es            | l           |
| WOOD SWR = 6.5Total W = 40.2kipsrefore:V.ult=0.142WV=5.7kipsUservice=0.099WV=4.0kips $E = \rho Eh + EVP = 1.0 or 1.3P.Y=1.3Special Conc SW5.52.5bearing wall system\rho.Y=1.3INCREASE SEISMICINCREASE SEISMICSpecial Conc SW5.52.5bearing wall systemV.ult=0.184WV=7.4kipsSteel OBF62building frame systemV.ult=0.184WV=7.4kipsSteel OBF62building frame systemV.ult=0.184WV=7.4kipsSteel OBF62building frame systemV.ult=0.184WV=7.4kipsSteel OBF52.5bearing wall systemV.ult=0.184WV=7.4kipsSteel OBF52.5building frame systemViservice=0.129WV=5.2kipsSteel SBF62building frame systemSteel SDF55Steel SDF62building frame systemSteel SDF62building frame systemV.utt=0.189pEx=5.2kipspEy=5.2kipsSteel SDF0VelMrKWhrKStremoth/LRFDALLow stress DesionDiaphragmKindStremoth/LRFD3.73.77.42.65.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | I= <u>1</u>            | _ T=              | 0.203          |                   | Ē        |              |           |           |            |               |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WOOD SW                      | R = 6.5                | Total W =         | 40.2           | kips              |          |              |           | Common    | Values     |               |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | \ <i>(</i> <b>b</b> -  | 0 1 4 0           | M/ M-          | <b>5</b> 7 kin -  |          |              | M         | <u> </u>  | omega      |               |             |
| $E = \rho Eh + Ev \\ where \\ \rho.y. = 1.3 \\ \rho.x. $ | ieretore:                    | V.uit=                 | 0.142             | VV V=          | 5.7 Kips          |          | Create       | VVOOD SVV | 0.5<br>E  | 3          | bearing wal   | l system    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | v.service-             | 0.099             | vv v-          | 4.0 Kips          |          | Special      |           | 5         | 2.5        | bearing wal   | l system    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $E = \rho E \Pi + E V$       | a = 10  or  12         |                   |                |                   |          | Special      |           | 25        | 2.5        | bearing wai   | Isystem     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | where                        | $\rho = 1.0011.3$      | 1                 |                |                   |          | 51           |           | 3.5       | 2          | building fran | ne system   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | p.y 1.3                |                   |                |                   |          | 0            |           | 5         | 2          | building from | ne system   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | p.x= 1.5               |                   | INCREASE S     | FISMIC            |          |              | Steel SBF | 6         | 2          | building fran | ne system   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                        |                   |                | LIOINIO           |          |              | Cant Col  | Ŭ         | -          | building fran | ne system   |
| V. service = 0.129  W  V = 5.2  kips e: IBC Ax and r are evaluated at each floor<br>refore: $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | V.ult=                 | 0.184             | W V=           | 7.4 kips          | L        |              |           | 0         | 0          | v             |             |
| e: IBC Ax and r are evaluated at each floor<br>refore: $pEx = 7.4$ kips $pEy = 7.4$ kips<br>pEx = 5.2 kips $pEy = 5.2$ kips<br>ic distribution is relative to $T = 0.203$ sec> linear<br>distribution> $T = 0.203$ sec> linear<br>T = 0.203 sec> linear<br>distribution> $T = 0.203$ sec> linear<br>T = 0.203 sec> linear<br>T = 0.203 sec> linear<br>distribution> $T = 0.203$ sec> linear<br>T = 0.203 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | V.service=             | 0.129             | W V=           | 5.2 kips          |          |              |           |           |            |               |             |
| is the constraint of the constraint o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                        |                   |                |                   |          |              |           |           |            |               |             |
| Pietre $pex = 7.4$ kips $pey = 7.4$ kips         picx = 5.2       kips $pey = 5.2$ kips $pey = 5.2$ kips         ic distribution is relative to       T =       0.203       sec>       linear       distribution>       xponent)=       1.00         ISMIC DISTRIBUTION: X-Direction       STRENGTH / LRFD       ALLOW. STRESS DESIGN       Diaphragm         story shear       22       (story shear)       22       Scaled       Fx       Scaled         Mit       Wh*       Wh*       story shear       22       (story shear)       24       Scaled       Fx       Scaled         Isoof       14.6       19       277       0.50       3.7       3.7       2.6       2.6       0.049       0.7       0.049         Floor       25.6       11       282       0.50       3.7       7.4       2.6       5.2       1.4         .7E         Scaled       Wh*       Wh*       story shear       .2       Scaled       Fx       Scaled       Scaled         Svel       10.2       .74<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ote: IBC Ax and r are e      | valuated at each flo   | oor               |                | -5 7              |          | kina         |           |           |            |               |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lefelore.                    | pex = 7.4<br>pex = 5.2 | kips              |                | pey= 7.<br>pey= 5 | 4        | kips<br>kips |           |           |            |               |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | atic distribution is relativ | veto T=                | 0 203             | sec>           | p⊑y –             | 2        | кіра         |           |           |            |               |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uilding period               |                        |                   |                | distribution>     | ×        | (ponent)=    | 1.00      |           |            |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01                           |                        |                   |                |                   |          | • /          |           |           |            |               |             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EISMIC DISTRIBUTIO           | V: X-Direction         |                   | STRENGTH       | /LRFD ALLOV       | V. STRES | S DESIGN     |           |           | Diaphragn  | ņ             |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | level W                      | h Wh <sup>ĸ</sup>      | Wh <sup>k</sup>   | story shear    | Σ story           | shear    | Ξ.           | Scaled    | Fx        | Scaled     | ÷             |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (kips)                       | (ft) (kip-ft)          | Σ Wh <sup>k</sup> | (kips)         | (kips) (ki        | )s)      | (kips)       | Seismic   | (kips)    | Seismic    | :             |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Roof 14.6                    | 19 277                 | 0.50              | 3.7            | 3.7 2.            | 6        | 2.6          | 0.049     | 0.7       | 0.049      |               |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd Floor 25.6                | 11 282                 | 0.50              | 3.7            | /.4   2.          | 6        | 5.2          | 0.029     | 0.7       | 0.029      |               |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 40.2                       | 559                    | 1                 | 7.4            | 5.                | 2<br>7E  |              | 75        | 1.4       | 75         |               |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                        |                   |                |                   | ./⊏      |              | ./⊏       | ./⊏       | ./E        |               |             |
| wei         wh*         wh*         story shear         Σ         story shear         Σ         scaled         Fx         Scaled           (drs.)         (dr. ft)         (dr. ft) </td <td>EISMIC DISTRIBUTIO</td> <td>N: Y-Direction</td> <td></td> <td>STRENGTH</td> <td>/LRFD ALLOV</td> <td>V. STRES</td> <td>S DESIGN</td> <td></td> <td></td> <td>Diaphraon</td> <td>n</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EISMIC DISTRIBUTIO           | N: Y-Direction         |                   | STRENGTH       | /LRFD ALLOV       | V. STRES | S DESIGN     |           |           | Diaphraon  | n             |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | level W                      | h. Wh <sup>K</sup>     | Wh <sup>k</sup>   | story shear    | Σ. story          | shear    | Σ            | Scaled    | Fx        | Scaled     | :             |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (kjps)                       | (ft) (kjp-ft)          | Σ Wh <sup>k</sup> | (kips)         | (kips) (kit       | os)      | (Kips)       | Seismic   | (kips)    | Seismic    |               |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Roof 14.6                    | 19 277                 | 0.50              | 3.7            | 3.7 2.            | 6        | 2.6          | 0.049     | 0.7       | 0.049      |               |             |
| Σ 40.2 559 1 7.4 5.2 1.4<br>.7E .7E .7E .7E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd Floor 25.6                | 11 282                 | 0.50              | 3.7            | 7.4 2             | 6        | 5.2          | 0.029     | 0.7       | 0.029      |               |             |
| .7E .7E .7E .7E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Σ 40.2                       | 559                    | 1                 | 7.4            | . 5.              | 2        |              | •         | 1.4       |            |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                        |                   |                |                   | .7E      |              | .7E       | .7E       | .7E        |               |             |



|                      | GARAGELATE                 | AL             | 20-129<br>PROJECT NO. |
|----------------------|----------------------------|----------------|-----------------------|
| FOSSATTI PAWLAK      | 9820 SE 35th PL<br>PROJECT | -MERCER ISLAND | Idzijo<br>DATE        |
| STRUCTURAL ENGINEERS | CHEN                       | AM             |                       |
|                      | CLIENT L11                 | DESIGN         | SHEET NO.             |

| 9820 SE 3 | 5th PL - MERC | ER ISLAND | )      |         |         |        |            |         |              |           |              |             |           |              |      |         |          |      |
|-----------|---------------|-----------|--------|---------|---------|--------|------------|---------|--------------|-----------|--------------|-------------|-----------|--------------|------|---------|----------|------|
| V in N-S  | Roof          |           |        |         |         |        |            |         |              |           |              |             |           |              |      |         |          |      |
|           | shear (k) =   | 3.68      | (Wind) |         |         |        |            |         |              |           |              |             |           |              |      |         |          |      |
|           |               |           |        |         |         |        |            |         |              |           |              |             |           |              |      |         |          |      |
| Wall      | TW (ft)       | V (k)     | L (ft) | v (plf) | SW Type | h (ft) | Mot (k-ft) | TW (ft) | DLroof (psf) | Wfl (plf) | DLwall (psf) | Wwall (plf) | Mr (k-ft) | 0.6Mr (k-ft) | FS   | T (lbs) | Holdowns | Wall |
| W         | 12            | 1.84      | 24     | 77      | SW6     | 8.75   | 16.1       | 12.5    | 15           | 187.5     | 8            | 70          | 74        | 44           | 2.76 | 0       | N/A      | W    |
| E         | 12            | 1.84      | 15.5   | 119     | SW6     | 8.75   | 16.1       | 12.5    | 15           | 187.5     | 8            | 70          | 31        | 19           | 1.15 | 0       | N/A      | E    |
|           | 24            |           |        |         |         |        |            |         |              |           |              |             |           |              |      |         |          |      |
|           |               |           |        |         |         |        |            |         |              |           |              |             |           |              |      |         |          |      |
|           |               |           |        |         |         |        |            |         |              |           |              |             |           |              |      |         |          |      |
|           |               |           |        |         |         |        |            |         |              |           |              |             |           |              |      |         |          |      |

| 9820 SE 3   | 5th PL - MERC    | ER ISLAND   | )      |         |         |        |            |         |              |           |              |             |           |             |      |         |          |      |
|-------------|------------------|-------------|--------|---------|---------|--------|------------|---------|--------------|-----------|--------------|-------------|-----------|-------------|------|---------|----------|------|
| V in E-W    | Roof             |             |        |         |         |        |            |         |              |           |              |             |           |             |      |         |          |      |
|             | shear (k) =      | 3.55        | (Wind) |         |         |        |            |         |              |           |              |             |           |             |      |         |          |      |
|             |                  |             |        |         |         |        |            |         |              |           |              |             |           |             |      |         |          |      |
| Wall        | TW (ft)          | V (k)       | L (ft) | v (plf) | SW Type | h (ft) | Mot (k-ft) | TW (ft) | DLroof (psf) | Wfl (plf) | DLwall (psf) | Wwall (plf) | Mr (k-ft) | .6Mr (k-ft) | FS   | T (lbs) | Holdowns | Wall |
| N           | 12               | 1.78        | 7      | 254     | SW4*    |        |            |         |              |           |              |             |           |             |      |         |          | N    |
| S           | 12               | 1.78        | 24     | 74      | SW6     | 4.5    | 8.0        | 3       | 15           | 45        | 8            | 36          | 23        | 14          | 1.75 | 0       | N/A      | S    |
|             | 24               |             |        |         |         |        |            |         |              |           |              |             |           |             |      |         |          |      |
| * Shearwall | capacity reduced | by 1.25-0.1 | 25h/b  |         |         |        |            |         |              |           |              |             |           |             |      |         |          |      |
|             |                  |             |        |         |         |        |            |         |              |           |              |             |           |             |      |         |          |      |
|             |                  |             |        |         |         |        |            |         |              |           |              |             |           |             |      |         |          |      |

| Holdowns |        |        |            |         |               |           |              |             |           |             |      |         |          |      |
|----------|--------|--------|------------|---------|---------------|-----------|--------------|-------------|-----------|-------------|------|---------|----------|------|
| V in E-W | Roof   |        |            |         |               |           |              |             |           |             |      |         |          |      |
| Wall     | L (ft) | h (ft) | Mot (k-ft) | TW (ft) | DLfloor (psf) | Wfl (plf) | DLwall (psf) | Wwall (plf) | Mr (k-ft) | .6Mr (k-ft) | FS   | T (lbs) | Holdowns | Wall |
| v=       | 254    | plf    |            |         |               |           |              |             |           |             |      |         |          |      |
| N1       | 3.5    | 8.75   | 7.77       | 3       | 15            | 45        | 8            | 70          | 1         | 0.4         | 0.05 | 2098    | HDU2     | N1   |
| N2       | 3.5    | 8.75   | 7.77       | 3       | 15            | 45        | 8            | 70          | 1         | 0.4         | 0.05 | 2098    | HDU2     | N2   |



1

### www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail: Fossatti Pawlak Structural Engineers Asrade Mengstu PE 1735 Westlake Ave N, Ste 205 206-641-1336 | amengstu@fossatti.com Page: Project: Sub-Project I Pos. No.: Date:

6 Etruria Apartments Holdown Anchors 10/20/2020

Specifier's comments: HDU8 Calculations @ (E) footings

### 1 Input data

| Anchor type and diameter:          | HIT-RE 500 V3 + HAS-E 7/8                                                                        |
|------------------------------------|--------------------------------------------------------------------------------------------------|
| Effective embedment depth:         | h <sub>ef,opti</sub> = 15.748 in. (h <sub>ef,limit</sub> = 17.500 in.)                           |
| Material:                          | 5.8                                                                                              |
| Evaluation Service Report:         | ESR-3814                                                                                         |
| Issued I Valid:                    | 1/1/2019   1/1/2021                                                                              |
| Proof:                             | Design method ACI 318-14 / Chem                                                                  |
| Stand-off installation:            | - (Recommended plate thickness: not calculated)                                                  |
| Profile:                           |                                                                                                  |
| Base material:                     | cracked concrete, 2500, $f_c{}^{\prime}$ = 2,500 psi; h = 24.000 in., Temp. short/long: 32/32 °F |
| Installation:                      | hammer drilled hole, Installation condition: Dry                                                 |
| Reinforcement:                     | tension: condition A, shear: condition A; no supplemental splitting reinforcement present        |
|                                    | edge reinforcement: none or < No. 4 bar                                                          |
| Seismic loads (cat. C, D, E, or F) | Tension load: yes (17.2.3.4.3 (b))                                                               |
|                                    | Shear load: yes (17.2.3.5.3 (a))                                                                 |

 $^{\rm R}$  - The anchor calculation is based on a rigid anchor plate assumption.

### Geometry [in.] & Loading [lb, in.lb]



Input data and results must be checked for agreement with the existing conditions and for plausipility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan



### www.hilti.us

| Company:     |
|--------------|
| Specifier:   |
| Address:     |
| Phone I Fax: |
| E-Mail:      |

Fossatti Pawlak Structural Engineers Asrade Mengstu PE 1735 Westlake Ave N, Ste 205 206-641-1336 | amengstu@fossatti.com

| Page:                    |
|--------------------------|
| Project:                 |
| Sub-Project I Pos. No .: |
| Date:                    |

2 6 Etruria Apartments Holdown Anchors 10/20/2020

### 2 Load case/Resulting anchor forces

Load case: Design loads

### Anchor reactions [lb]

| Tension force: (+                                                             | - Tension, -Compre                                                                      | ession)                       |                                      |               |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|---------------|
| Anchor                                                                        | Tension force                                                                           | Shear force                   | Shear force x                        | Shear force y |
| 1                                                                             | 8,400                                                                                   | 0                             | 0                                    | 0             |
| max. concrete co<br>max. concrete co<br>resulting tension<br>resulting compre | ompressive strain:<br>ompressive stress:<br>force in (x/y)=(0.0<br>ssion force in (x/y) | 00/0.000):<br>=(0.000/0.000): | - [‰]<br>- [psi]<br>0 [lb]<br>0 [lb] |               |

### **3 Tension load**

|                                       | Load N <sub>ua</sub> [lb] | Capacity <b>φ</b> N <sub>n</sub> [lb] | Utilization $\beta_N = N_{ua}/\phi N_n$ | Status |
|---------------------------------------|---------------------------|---------------------------------------|-----------------------------------------|--------|
| Steel Strength*                       | 8,400                     | 21,755                                | 39                                      | OK     |
| Bond Strength**                       | 8,400                     | 12,716                                | 67                                      | ОК     |
| Sustained Tension Load Bond Strength* | N/A                       | N/A                                   | N/A                                     | N/A    |
| Concrete Breakout Strength**          | 8,400                     | 8,402                                 | 100                                     | OK     |

\* anchor having the highest loading \*\*anchor group (anchors in tension)

### 3.1 Steel Strength

| N <sub>sa</sub> [lb] | φ     | φ N <sub>sa</sub> [lb] | N <sub>ua</sub> [lb] |
|----------------------|-------|------------------------|----------------------|
| 33,470               | 0.650 | 21,755                 | 8,400                |

### 3.2 Bond Strength

| A <sub>Na</sub> [in. <sup>2</sup> ] | A <sub>Na0</sub> [in. <sup>2</sup> ] | c <sub>Na</sub> [in.]            | c <sub>a,min</sub> [in.] | c <sub>ac</sub> [in.] |                        |                      |
|-------------------------------------|--------------------------------------|----------------------------------|--------------------------|-----------------------|------------------------|----------------------|
| 352.59                              | 562.84                               | 11.862                           | 3.000                    | 37.574                | -                      |                      |
| α <sub>overhead</sub><br>1.000      | τ <sub>k,uncr</sub> [psi]<br>2,040   | τ <sub>k,cr</sub> [psi]<br>1,240 | -                        |                       |                        |                      |
| e <sub>c1,N</sub> [in.]             | Ψ ec1,Na                             | e <sub>c2,N</sub> [in.]          | Ψ ec2,Na                 | $\Psi$ ed,Na          | Ψ cp,Na                | $\alpha_{N,seis}$    |
| 0.000                               | 1.000                                | 0.000                            | 1.000                    | 0.776                 | 1.000                  | 1.000                |
| λa                                  | N <sub>ba</sub> [lb]                 | φ                                | ∮ seismic                | $\phi$ nonductile     | φ N <sub>ag</sub> [lb] | N <sub>ua</sub> [lb] |
| 1.000                               | 53,666                               | 0.650                            | 0.750                    | 1.000                 | 12,716                 | 8,400                |

### 3.3 Concrete Breakout Strength

| A <sub>Nc</sub> [in. <sup>2</sup> ] | A <sub>Nc0</sub> [in. <sup>2</sup> ] | c <sub>a,min</sub> [in.] | c <sub>ac</sub> [in.] | Ψ с,N               |                      |                 |
|-------------------------------------|--------------------------------------|--------------------------|-----------------------|---------------------|----------------------|-----------------|
| 850.18                              | 2,230.89                             | 3.000                    | 37.574                | 1.000               |                      |                 |
| e <sub>c1,N</sub> [in.]             | Ψ ec1,N                              | e <sub>c2,N</sub> [in.]  | Ψ ec2,N               | $\psi$ ed,N         | $\Psi_{\text{cp,N}}$ | k <sub>cr</sub> |
| 0.000                               | 1.000                                | 0.000                    | 1.000                 | 0.738               | 1.000                | 17              |
| λa                                  | N <sub>b</sub> [lb]                  | φ                        | φ seismic             | $\phi N_{cbg}$ [lb] | N <sub>ua</sub> [lb] |                 |
| 1.000                               | 53,100                               | 0.750                    | 0.750                 | 8,402               | 8,400                |                 |



#### www.hilti.us

| Company:     | Fossatti Pawl |
|--------------|---------------|
| Specifier:   | Asrade Meng   |
| Address:     | 1735 Westlak  |
| Phone I Fax: | 206-641-1336  |
| E-Mail:      | amengstu@fo   |

ossatti Pawlak Structural Engineers srade Mengstu PE 735 Westlake Ave N, Ste 205 06-641-1336 | mengstu@fossatti.com Page: Project: Sub-Project I Pos. No.: Date: 3 6 Etruria Apartments Holdown Anchors 10/20/2020

Profis Anchor 2.8.8

### 4 Shear load

|                                           | Load V <sub>ua</sub> [lb] | Capacity <b></b> | Utilization $\beta_V = V_{ua}/\phi V_n$ | Status |
|-------------------------------------------|---------------------------|------------------|-----------------------------------------|--------|
| Steel Strength*                           | N/A                       | N/A              | N/A                                     | N/A    |
| Steel failure (with lever arm)*           | N/A                       | N/A              | N/A                                     | N/A    |
| Pryout Strength (Bond Strength controls)* | N/A                       | N/A              | N/A                                     | N/A    |
| Concrete edge failure in direction **     | N/A                       | N/A              | N/A                                     | N/A    |
|                                           |                           |                  |                                         |        |

\* anchor having the highest loading \*\*anchor group (relevant anchors)

### 5 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-14, Chapter 17, Section 17.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c).
- Section 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by  $\omega_0$ .
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-14, Section 17.8.1.

### Fastening meets the design criteria!



### Profis Anchor 2.8.8

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail: Fossatti Pawlak Structural Engineers Asrade Mengstu PE 1735 Westlake Ave N, Ste 205 206-641-1336 | amengstu@fossatti.com

Page: Project: Sub-Project I Pos. No.: Date: 4 6 Etruria Apartments Holdown Anchors 10/20/2020

### 6 Installation data

Anchor plate, steel: -Profile: -Hole diameter in the fixture: -Plate thickness (input): -Recommended plate thickness: -Drilling method: Hammer drilled Cleaning: Compressed air cleaning of the drilled hole according to instructions for use is required Anchor type and diameter: HIT-RE 500 V3 + HAS-E 7/8 Installation torque: 756.000 in.lb Hole diameter in the base material: 1.000 in. Hole depth in the base material: 15.748 in. Minimum thickness of the base material: 17.748 in.

### 6.1 Recommended accessories

| Dri        | lling                       |                          |             |        | С     | leaning                                     |                                        | Setting                                                                           |
|------------|-----------------------------|--------------------------|-------------|--------|-------|---------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------|
| • 5<br>• F | Suitable Ro<br>Properly siz | otary Har<br>zed drill I | mmer<br>bit |        | •     | Compres<br>accessor<br>the hole<br>Proper d | ssed air w<br>ries to blo<br>iameter w | <ul> <li>Dispenser including cassette and mixer</li> <li>Torque wrench</li> </ul> |
| Co         | ordinates                   | Anchor                   | r in.       |        |       |                                             |                                        |                                                                                   |
|            | Anchor                      | x                        | У           | C-x    | C+x   | <b>C</b> <sub>-y</sub>                      | C <sub>+y</sub>                        |                                                                                   |
|            | 1                           | 0 000                    | 0.000       | 15 000 | 3 000 | -                                           | -                                      |                                                                                   |

### 7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas
  and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be
  strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted
  prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the
  data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be
  put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly
  with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an
  aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or
  suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.